4.1 Biologische Materialschädigung und Referenzorganismen
Filtern
Dokumenttyp
- Zeitschriftenartikel (95)
- Vortrag (95)
- Posterpräsentation (65)
- Beitrag zu einem Tagungsband (11)
- Forschungsbericht (5)
- Buchkapitel (3)
- Dissertation (3)
- Sonstiges (2)
- Beitrag zu einem Sammelband (1)
- Video (1)
Sprache
- Englisch (248)
- Deutsch (31)
- Chinesisch (2)
Schlagworte
- Biocides (48)
- Antimicrobial resistance (34)
- MIC (23)
- Bacteria (22)
- Biofilms (22)
- Corrosion (20)
- Evolution (16)
- Biofilm (14)
- Methanogens (13)
- Microbiologically influenced corrosion (13)
Organisationseinheit der BAM
- 4 Material und Umwelt (281)
- 4.1 Biologische Materialschädigung und Referenzorganismen (281)
- 6 Materialchemie (56)
- 6.2 Material- und Oberflächentechnologien (32)
- 1 Analytische Chemie; Referenzmaterialien (24)
- 4.0 Abteilungsleitung und andere (21)
- 6.1 Oberflächen- und Dünnschichtanalyse (20)
- 1.1 Anorganische Spurenanalytik (14)
- 1.7 Organische Spuren- und Lebensmittelanalytik (9)
- 1.8 Umweltanalytik (8)
Paper des Monats
- ja (6)
Biofilms are multicellular assemblies of bacteria living in a self-produced extracellular matrix. One characteristic of biofilms is that they are difficult to kill. Different mechanisms, like the development of persister cells or efflux pumps which pump some antimicrobials out of the cell, make them tolerant. Our central hypothesis is that efflux pump activity causes emergent antimicrobial tolerance of multicellular bacterial populations, through the interplay of efflux-mediated spatial interactions and efflux-linked persistence. To verify the hypothesis, we combine computational modelling with information gained from 3 types of multicellular assemblies. We are currently generating strains that differ in their levels of efflux activity, mixes are then cultivated together in the 3 model systems. In colonies the link between structure and spatial patterns of gene expression will be characterized. Using a microfluidic device, the interactions range of efflux as a response to different antimicrobials will be determined. In a flow chamber a 3D biofilm will be generated, to investigate the biofilm development over time and persister cell formation. All results will be compared with model predictions.
Biofilms are multicellular assemblies of bacteria living in a self-produced extracellular matrix. One characteristic of biofilms is that they are difficult to kill. Different mechanisms, like the development of persister cells or efflux pumps which pump some antimicrobials out of the cell, make them tolerant. Our central hypothesis is that efflux pump activity causes emergent antimicrobial tolerance of multicellular bacterial populations, through the interplay of efflux-mediated spatial interactions and efflux-linked persistence. To verify the hypothesis, we combine computational modelling with information gained from 3 types of multicellular assemblies. We are currently generating strains that differ in their levels of efflux activity, mixes are then cultivated together in the 3 model systems. In colonies the link between structure and spatial patterns of gene expression will be characterized. Using a microfluidic device, the interactions range of efflux as a response to different antimicrobials will be determined. In a flow chamber a 3D biofilm will be generated, to investigate the biofilm development over time and persister cell formation. All results will be compared with model predictions.
Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms that can make bacteria less susceptible to QACs, including phenotypic heterogeneity.
Goals
To develop a fluorescent quaternary ammonium compound and to use it to investigate the mechanisms underlying QAC susceptibility in bacteria.
Material & Methods
A fluorescent quaternary ammonium compound, N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl] azanium-iodide (NBD-DDA), was synthesized. Chemical structure and purity of NBD-DDA was confirmed by mass spectrometry and NMR spectroscopy. Antimicrobial activity against S. aureus, P. aeruginosa and E. coli was assessed by determination of minimum inhibitory concentrations and time-kill assays. Uptake, heterogeneity and efflux of NBD-DDA in wild-type and efflux-deficient mutants (ΔtolC) were determined, using flow cytometry and fluorometry. Sub-cellular localization of NBD-DDA was determined using confocal laser scanning microscopy.
Results
NBD-DDA was readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings. NBD-DDA retained antimicrobial activity comparable to the structurally similar, widely used QAC benzalkonium chloride (BAC). Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. NBD-DDA was preferentially localized to the cell envelope, which is a primary target of BAC and other QACs. Leveraging NBD-DDA‘s fluorescent properties, it was demonstrated that reduced cellular accumulation underlies BAC tolerance in a BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC.
Summary
Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study mechanisms of QAC susceptibility and mode-of-action in bacteria, both on the level of populations and single-cells.
Background: Antimicrobial surfaces and coatings (AMCs) are important to protect man-made structures from biodeterioration and biodegradation. Advances in nano-structuring methods hold the promise of a new generation of AMCs. However, the evolution and selection of bacterial resistance to AMCs may threaten their efficacy in the long term. Therefore, according to the EU Biocidal Products Regulation, the risk of resistance development upon exposure to AMCs must be evaluated during product authorization. The same applies to the development of cross-resistances to other substances, for instance biocides and antibiotics. However, no standardized method exists to assess the risk of resistance and cross-resistance development upon exposure to AMCs during the authorization process.
Objectives:
• To develop a standardizable adaptive laboratory evolution experiment to be performed on AMCs (ALEE-AMC)
• To assess performance and robustness of ALEE-AMC in a round robin test, using a copper AMC as reference
• To uncover the mechanisms underlying evolution of resistance to copper AMC
Materials & Methods: ALEE-AMC was developed based on an approved standard to determine the efficacy of antimicrobial surfaces (ISO 22196). ALEE-MC was performed on an antimicrobial copper surface as reference material and Escherichia coli as model organism. A round robin test was conducted with six participants to evaluate the reproducibility and applicability of ALEE-AMC. Evolved E. coli populations from the round robin partners were collected and subjected to phenotypic (antimicrobial susceptibility testing, ISO 22196) and genotypic (whole genome sequencing) characterization at BAM.
Results: The results of the ALEE-AMC round robin test indicate that repeated exposure to copper can select for reduced copper susceptibility. However, failure of individual E. coli lineages to adapt to the copper surfaces was also observed. Evolved E. coli exhibited increased survival upon exposure to copper surfaces. Adaptation to copper did not induce cross-resistance to antibiotics. Whole genome sequencing of the evolved E. coli revealed high diversity of mutations among individual evolved strains, indicating the existence of multiple, underexplored evolutionary pathways towards increased survival of antimicrobial copper surfaces.
Conclusion & Significance: ALEE-AMC offers a standardizable platform to assess the risk of resistance development towards novel and existing AMCs. Specifically, using ALEE-AMC in a round robin test, insights into evolvable survival mechanisms to copper AMCs have been gained. These mechanistic insights may be exploited to prevent the evolution against copper AMCs. In future steps, criteria need to be defined to provide guidelines for the authorization of AMCs based on the outcomes of ALEE-AMC
A consortium of landfill bacteria including strain G3 can break down polyethylene, a long-lasting plastic that accumulates in the environment. The complete genome sequence of strain G3 was determined by PacBio and Nanopore sequencing and consists of three circular replicons. Genome-based classification assigned strain G3 to the species Pseudomonas silesiensis.
ABSTRACT: Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements.
Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level.
Antimicrobial resistance (AMR) is a global health problem. It is well known that antibiotics can drive evolutionary processes that underlie antimicrobial resistance (AMR) evolution and spread in clinical and environmental settings. In contrast, less is known about the effects of antimicrobial substances that are used as biocides (i.e. disinfectants and preservatives) on AMR evolution and spread. Biocides are present in various settings, interacting with diverse microbial communities. Therefore, it is crucial to evaluate their role in the evolution and dissemination of antimicrobial resistance. Biocides occur in a wide range of concentrations in various environmental settings. By examining how the various concentrations affect selection mechanisms, we gain insights into potential developments related to antimicrobial resistance. The aim of this PhD thesis is to investigate the effects of biocides on processes underlying resistance evolution. Specifically, the work focused on key mechanisms for resistance spread, resistance evolution, and the effect of selection pressures on evolved resistance mechanisms. The thesis is structured around three major objectives: (i) to determine the effect of biocides on the evolution of resistance by affecting the rate of occurrence of de novo mutations, (ii) to determine the effect of biocides on the spread of resistance genes by modifying the rate of horizontal gene transfer (HGT) processes, and (iii) to investigate the selective drivers of the emergence of antimicrobial resistance in adaptive laboratory evolution (ALE) experiments. De-novo mutations are spontaneous mutations that occur at a certain rate in microorganisms. The effect of biocides at subinhibitory environmentally relevant concentrations on the mutation rate in Acinetobacer baylyi, Bacillus subtilis and Escherichia coli was assessed with the fluctuation assay. The results showed that biocides affected mutation rates in a species and substance dependent matter. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in E. coli, whereas no increases were identified for B. subtilis and A. baylyi. Horizontal gene transfer refers to diverse mechanisms that mediate the transfer of mobile genetic elements between microorganisms. This work focused on conjugation and transformation. Conjugation is a process whereby a conjugative plasmid is transferred from a donor cell to a recipient cell. Transformation is a process whereby exogenous donor DNA is taken up into a recipient cell and integrated into the recipient’s’ genome. The effects of subinhibitory environmentally relevant biocide concentrations on the conjugation rate of E. coli and the transformation rate of the naturally competent organisms A. baylyi in were assessed. The results showed that benzalkonium chloride (BAC), chlorhexidine and permethrin increased conjugation in E. coli, while none of the biocides increased transformation rates in A. baylyi. To further understand the molecular mechanisms underlying the effects on mutation and conjugation rates, I investigated the induction of the RpoS-mediated general stress and the RecA-linked SOS response upon biocide exposure. The results show a link between the general stress and the SOS response with increased rates of mutation and conjugation, but not for all biocides. One major approach to study the evolutionary response of bacteria to antimicrobials are ALE experiments with growth at subinhibitory concentrations linked to serial subculturing over many generations. Such experiments have been used to study resistance evolution to antibiotics and biocides. However, previous work showed that adaptation to biocide stress may be mediated by different evolutionary drivers. Here, I investigated the contributions of evolution for increased survival as opposed to improved growth in ALE experiments with E. coli exposed to subinhibitory BAC concentrations. Two distinct evolutionary treatments selecting for survival only or survival and growth led to specific evolutionary adaptations apparent in the phenotypes and genotypes of the evolved populations. Populations growing in the presence of BAC evolved increased fitness in the presence of BAC associated with higher resistance to BAC and cross-resistance to antibiotics, while this was not the case for populations evolving for increased survival only. Genotypic characterization by whole genome sequencing of the evolved populations revealed parallelism in mutated genes among replicate populations and distinct differences across treatments. Treatments selecting for survival and growth showed mutations in stress response related genes (hslO and tufA), while selection for survival led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ). In summary, this thesis shows that biocides affect AMR evolution and emphasizes the importance of understanding of how biocides impact the molecular and evolutionary process that underlie AMR evolution.