• Treffer 6 von 56
Zurück zur Trefferliste

G/L Mass Transfer Phenomena in Micellar Emulsion Systems

  • Introduction: Homogenously catalyzed reactions in multiphase systems, as they are used for example for the hydroformylation or reductive amination, offer a promising approach to produce base chemicals from renewable resources. The organic and gaseous educts react with the catalyst, which is designed to be soluble in water to provide a good separation from the likewise organic products. In the resulting gas/liquid/liquid systems, the reaction is controlled through interfacial and transport phenomena. These processes fail for long chained olefins – e.g. vegetable oils and fats – because of their low solubility in water. Therefore, surfactants can be added as an emulsifier to form micellar emulsion systems (MES) [1], increase reaction speed [2] and facilitate phase separation [3]. These systems form up to three liquid phases, depending on temperature and composition. For fast reactions, the gas/liquid mass transfer plays an important role. Due to the multiple phases present, theIntroduction: Homogenously catalyzed reactions in multiphase systems, as they are used for example for the hydroformylation or reductive amination, offer a promising approach to produce base chemicals from renewable resources. The organic and gaseous educts react with the catalyst, which is designed to be soluble in water to provide a good separation from the likewise organic products. In the resulting gas/liquid/liquid systems, the reaction is controlled through interfacial and transport phenomena. These processes fail for long chained olefins – e.g. vegetable oils and fats – because of their low solubility in water. Therefore, surfactants can be added as an emulsifier to form micellar emulsion systems (MES) [1], increase reaction speed [2] and facilitate phase separation [3]. These systems form up to three liquid phases, depending on temperature and composition. For fast reactions, the gas/liquid mass transfer plays an important role. Due to the multiple phases present, the dispersion conditions of the particles and the resulting mass transfer are complex. Methods: In this work, the mass transfer in MES is investigated. For simplicity, only the non-reactive material system without catalyst consisting of water, dodecane and the non-ionic surfactant Marlophen NP8 was investigated. Hydrogen was applied as gas phase. The phase behavior of the MES was characterized using settling experiments and by measuring the conductivity of the emulsions [4]. The mass transfer experiments were conducted in two different setups employing the dynamic pressure method. In a pressurized stirred tank reactor, the mass transfer performance of the whole MES was determined under the complex dispersion conditions and a variety of different system parameters by measuring the volumetric mass transfer coefficient (kLa). The specific transfer area (a) was determined measuring gas hold-up and using optical endoscope measurements [5] to record bubble sizes. The non-spherical bubbles were analyzed with a trained convolutional neural network [6]. Using a falling film capillary in a closed pressurized system [7], the mass transfer of the single phases appearing in MES were quantified. The phases were removed and investigated separately after the settling experiments. A gravity-driven laminar flow with well-defined transfer area was established along the capillary and by measuring the pressure drop over time the mass transfer coefficient (kL) could be calculated. Results: The mass transfer coefficients of hydrogen in the single phases of the micellar emulsion system covered a broad range. The kL of the aqueous phase was similar to pure water, while the third, bi-continuous phase forming in MES had very small kL values due to its high viscosity. The mass transfer coefficient of the organic phase was found to be far higher than of the aqueous phase. In the stirred tank reactor, different phases formed the continuous phase in the whole MES mixture for the temperature range investigated. The fastest mass transfer was found for a continuous aqueous phase below 87 °C. At higher temperatures, a phase inversion occurred, and the organic phase became continuous. The high kL of the organic phase measured in the falling film contactor did not translate directly to a higher kLa in the stirred tank reactor as the value dropped compared to an aqueous continuous phase present. The change in continuous phase were found to affect the drop and bubble sizes in the system. For an organic continuous phase, the Sauter mean diameter of the bubbles were larger and the transfer area smaller, which was the main reason for the reduced kLa.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 210923_ECCE13_MP_V2.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M. Petzold
Koautor*innen:N. Afraz, Kristin Hecht, L. Böhm, M. Kraume
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.2 Prozesssimulation
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Mehrphasenströmung; Stofftransport; Wasserstoff
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:13th European Congress of Chemical Engineering (ECCE)
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:20.09.2021
Enddatum der Veranstaltung:23.09.2021
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:03.11.2021
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.