2 Chemische Sicherheitstechnik
Filtern
Dokumenttyp
- Vortrag (398)
- Zeitschriftenartikel (143)
- Beitrag zu einem Tagungsband (69)
- Posterpräsentation (56)
- Zeitschriftenheft (Herausgeberschaft für das komplette Heft) (9)
- Buchkapitel (6)
- Handbuch (4)
- Sonstiges (4)
- Forschungsbericht (4)
- Beitrag zu einem Sammelband (2)
Sprache
- Deutsch (399)
- Englisch (296)
- Mehrsprachig (2)
Schlagworte
- Explosionsschutz (65)
- Behälterversagen (34)
- Explosivstoffe (34)
- Schlagfunken (33)
- Mechanisch erzeugte Funken (30)
- Nichtelektrischer Explosionsschutz (29)
- Nichtelektrische Funken (26)
- Gefahrstoffverordnung (23)
- Pyrotechnik (23)
- Arbeitsschutz (21)
Organisationseinheit der BAM
- 2 Chemische Sicherheitstechnik (697)
- 2.1 Sicherheit von Energieträgern (402)
- 2.2 Sicherheit in der Prozesstechnik (116)
- 2.0 Abteilungsleitung und andere (82)
- 2.3 Einstufung von Gefahrstoffen und -gütern (65)
- 8 Zerstörungsfreie Prüfung (65)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (56)
- 3 Gefahrgutumschließungen; Energiespeicher (47)
- 2.5 Konformitätsbewertung Explosivstoffe/Pyrotechnik (46)
- 2.4 Prüfung und Bewertung von Explosivstoffen/Pyrotechnik (31)
Bei Geräten und Maschinen zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen gemäß 2014/34/EU muss in der europäischen Union eine Zündgefahrenbewertung durchgeführt werden. Dabei müssen unter anderem die Gefahren von nichtelektrischen Zündquellen betrachtet werden, zu denen auch die mechanischen Schlagvorgänge gehören.
Bei mechanischen Schlagvorgängen kommt es infolge des Zusammenstoßes zweier Werkstücke bzw. Bauteile zu einer Umwandlung der kinetischen Energie. Dabei erhöht sich die Temperatur der Werkstoffe an der Kontaktstelle und es kommt unter Umständen zu einem Abtrennvorgang kleiner Partikel erhöhter Temperatur. Sowohl die heißen Kontaktstellen (Zündquelle "heiße Oberflächen") als auch die abgetrennten Partikel (Zündquelle "mechanisch erzeugte Funken") können eine wirksame Zündquelle für ein explosionsfähiges Gasgemisch darstellen.
Zur Festlegung von Grenzwerten wurden in der Norm DIN EN ISO 80079-36:2016 die Gasgemische anhand ihrer Explosionsgruppe klassifiziert und zu jeder Gruppe die maximale Energie des Schlagvorgangs festgelegt, unter derer die Entstehung einer wirksamen Zündquelle als unwahrscheinlich angenommen werden kann.
Within a research cooperation between BAM and Gexcon as part of the SH2IFT program, large scale experiments have been performed at the Test Site Technical Safety of the Bundesanstalt für Materialforschung und –prüfung (BAM) to determine the hazards emerging from a vacuum insulated cryogenic storage vessel containing liquified hydrogen (LH2) is caught in a fire engulfing it.
In dem hier vorgestellten Projekt wurde die Wirksamkeit mechanischer Schläge als Zündquelle für wasserstoffhaltige Atmosphären in Abhängigkeit von der inhomogenen Materialpaarung systematisch untersucht. Dabei wurden praxisrelevante Materialien wie Edelstahl, niedrig legierter Stahl, Beton und Nichteisenmetalle betrachtet. Es wurde festgestellt, dass eine Zündung vermieden werden kann, wenn Nichteisenmetalle in Kombination mit verschiedenen metallischen Werkstoffen verwendet werden. In Kombination mit Beton muss die kinetische Schlagenergie auch mit Nichteisenmetallen weiter begrenzt werden, um eine wirksame Entzündung zu vermeiden. Außerdem wurde untersucht, wie sich die Beimischung von Wasserstoff zu Erdgas auf die Wirksamkeit mechanischer Stöße als Zündquelle auswirkt. Bei Beimischungen von bis zu 25 % Wasserstoff und sogar mehr konnte kein Einfluss festgestellt werden. Die Ergebnisse sind vor allem relevant im Zusammenhang mit der Umwidmung des Erdgasnetzes oder der Beimischung von Wasserstoff im Erdgasnetzes.
Es werden das EU-finanzierte FE-Projekt ODYSSEUS, ausgewählte Ergebnisse zum Thema Home-made-explsosives (HMEs) und precursers, aktuelle Fragestellungen und ein Ausblick vorgestellt.
Ammonia Safety
(2023)
In order to share the latest technological information in the gas field and develop the gas industry, the Korean Gas Safety Corporation host an international gas safety seminar every year by inviting domestic and foreign experts. In year 2023, the seminar focussed on the latest trends in ammonia safety management and utilization technology. BAM was asked to give a presentation on ammonia safety and its flammability in specific. Based on the international flammability classification the required explosion protection measures were presented,which are defined by the European ATEX rules. As final part of the presentation the German strategy on transformation of existing infrastructure, here especially the transformation of landbased LNG terminals, was shown as well.
Ammonia Safety
(2023)
Ammonia is an energy source that has been produced and used on a large scale for many decades, primarily as a fertilizer or feedstock in nitrogen chemistry. The CAMPFIRE alliance, founded as part of the "WIR!- Wandel durch Innovation in der Region" funding program of the German Federal Ministry of Education and Research (BMBF), aims to research and develop new energy conversion and storage technologies for the future energy system based on green ammonia. The safe handling of ammonia is an important issue along the entire value chain. Therefore, the alliance has organized a webinar to discuss the topic of ammonia safety and in particular its flammability. BAM's contribution presented the topic of flammability in detail, placed the classification of ammonia in an international, European and national context and presented the basic principles of explosion protection that result from this and must be observed during use and application.
A technical-safety evaluation of the detonation effects of pyrotechnic compositions can be performed on the basis of TNT/PETN equivalence. The equivalence determination can be carried out by characterization of the blast wave generated because of detonation in free field tests, which however can be highly resource intensive and prone to uncertainties. Here, we present underwater ‘small-scale’ experiments for the determination of such equivalents.
Underwater experiments, as described in the European standard EN 13763-15:2004, are performed to test the capability of detonators to initiate secondary explosives by determining the released energy. At BAM this test was modified to compare the energy output of the pyrotechnic mixtures (those used in air bag gas generators and firework flash compositions) and thus to determine their equivalents of high explosives like TNT or PETN. In the modified tests, small cylindrical copper containers were filled with pyrotechnic substances, which were then attached to standard detonators. This explosive charge assembly was then lowered into a water tank of about 1000 l capacity. At the same depth as the charge assembly, a piezoelectric pressure sensor was immersed in the water at a horizontal distance of about 400 mm from the charge. By recording the time-dependent pressure during the test, the shock energy as well as the energy associated with the expanding gas bubble were determined.
A safety or security related assessment of explosions, accidental and intentional scenarios alike, often necessitate performance of replication-tests. Such test results are necessary to clarify the causes within the scope of forensic investigations. To gain important insights into the behavior of structures and materials under such loading, field tests may also be performed in accordance with different test standards. To determine the resistance of building-structures after explosions, estimation of the residual load-bearing capacity in addition to the assessment of dynamic structural response and damage to the building components is important. In most cases an evaluation of structural integrity is based only on the visual damage, resulting in an overestimation of the residual capacity.
The Bundesanstalt für Materialforschung und -prüfung (BAM) operates the Test site for Technical Safety (TTS) on an area measuring about 12 km2 in the Federal State of Brandenburg for execution of true-to-scale explosion tests. At the TTS, building component testing was performed to assess the suitability of different non-destructive testing methods to characterize the dynamic structural response and damage resulting from the detonation of high explosives.
Different blast-loading scenarios were realized by varying the net explosive mass and the standoff distance with all scenarios representing a near-field detonation. The test object was a reinforced concrete wall 2 m high, 2.5 m wide and 20 cm thick, fixed at both vertical edges. The dynamic loading of the wall was characterized with 8 piezoelectric pressure sensors flush-mounted on the front surface, thus measuring the reflected pressures from the shock wave. The tests were conducted with the aim of characterizing the global behavior of the wall under dynamic shock loading and the resulting local damage pattern, respectively. High speed digital image correlation was implemented in combination with multiple acceleration sensors to observe the rear surface of the wall to chart the dynamic deflection during the loading and to determine the residual deformation after the loading had ceased. In addition, one test specimen was instrumented with fiber optic sensor cables, both fixed to the rebars and embedded in the concrete-matrix, respectively. Firstly, these sensors were interrogated during the blast test by a distributed acoustic sensing (DAS) device using a particularly high sampling rate to measure the shock-induced vibrations in the structure with high temporal resolution. This delivers information on dynamics of compression and tension cycles from within the structure. Secondly, the local damage-pattern emerging during the series of blasts was determined via distributed fiber optic strain sensing (DSS) by interrogating the embedded fiber optic sensors with a high spatial resolution DSS device after each blast. This enabled the characterization of non-visual damage to the structure, in particular with regard to the formation of localized cracks in the concrete matrix. The DSS was further complimented by a structure-scanner based on ultrasonic measurements.
Our contribution describes this new test approach in detail. Results of the three datasets, namely dynamic shock loading, global behavior of the test object and the local damage pattern will be presented. The suitability of the implemented measurement methods will be discussed in combination with the challenges in their application for technical safety evaluation of building components under explosive loading.
Safety characteristics like the lower explosion limit, the highest concentration for a given substance mixed with air that does not result in a self-propagating flame, or the maximum explosion pressure, the highest pressure that can be reached after ignition for a given combustible substance mixed with air at any concentration, are widely used in the industry to either prevent an explosion or to mitigate the effects of it. Safety characteristics are not physical constants, are determined experimentally and depend on the chosen experimental parameters such as the ignition energy or turbulence.
For the determination of the safety characteristics lower explosion limit (LEL), limiting oxygen concentration (LOC), maximum explosion pressure (pmax) and maximum rate of pressure rise ((dp/dt)max) of gases and vapors the gas is filled via partial pressures into a test vessel and then ignited under quiescent conditions with a weak (2 J - 20 J) ignition source. For dusts, the same safety characteristics are determined under turbulent conditions to elevate
the dust homogeneously and it is ignited with two chemical igniters with an ignition energy of 1000 J each (LEL and LOC) or 5000 J each (pmax and (dp/dt)max). For the determination of safety characteristics of hybrid mixtures (a mixture containing a combustible dust and a flammable gas) there is no existing standard.
In the last 40 years most of the research on their safety characteristics was performed with dust testing equipment that was modified for the addition of flammable gas. Because of the different mixing procedures of gases and dusts with air and because of different ignition energies and sources that are normally used for the standard tests of gases or dusts, the results were hardly reproducible. Statements about the different safety characteristics were contradictory and left the reader or the person responsible for designing safety measures for a process plant or a facility behind with no clear suggestion about the behavior of hybrid
mixtures.
This thesis is aimed on determining the influence of the different ignition sources and energies on the safety characteristics pmax, (dp/dt)max, lower explosion limit, and limiting oxygen concentration of hybrid mixtures.
Several test series were conducted to characterize different standardized ignition sources, that are already in use for the determination of safety characteristics of single-phase substances (gases, liquids, dusts). The burning duration, the igniting volume and the net energy were investigated.
It was shown, that the chemical igniters and the exploding wire are suitable ignition sources for the determination of safety characteristics of hybrid mixtures in general. Their burning duration was long enough to ignite dusts and quick enough, that the decay of the turbulence or sedimentation of the dusts did not occur. Both ignition sources produced comparable results for the determination of pmax, LEL and (dp/dt)max of dusts when they had the same ignition energy. A reduced ignition energy of the exploding wire and the chemical igniters did not affect the pmax and (dp/dt)max. The LEL changed with lower energies. However, for the determination of the LOC of hybrid mixtures the exploding wires with an overall energy of 2 kJ produced the best results.
The influence of the different mixing procedures that have already been used for hybrid mixtures and the requirements for them were also investigated experimentally for the gas concentration and the determined safety characteristics and compared to each other. It was shown, that the partial pressure method works for mixing hybrid mixtures but the pressures should be measured very accurately and the gas concentration should be validated.
Furthermore, the influence of the turbulence that is inevitable when testing dusts, on the safety characteristics of gases was determined. It was found that the chemical igniters and exploding wires produced comparable results for the determination of pmax, LEL and (dp/dt)max under turbulence. For the LOC only exploding wires with two times 1 kJ worked.
Finally, the safety characteristics of hybrid mixtures were determined with different ignition energies and sources and the data were compared. It was discovered, that the pmax of hybrid mixtures was the same value than the higher determined one of the single substances while (dp/dt)max of hybrid mixtures was about 10 % to 25 % higher than the value of the stoichiometric gas mixture under turbulence. The point was found at the stoichiometric gas concentration with very little amounts of dust.
To prove the key findings of this work and for the establishment of a standardized procedure for the determination of safety characteristics of hybrid mixtures, an international round robin test was conducted with eleven participating facilities in seven countries. The results were comparable within a reasonable range and are presented in this dissertation in an extra chapter.
Based upon the observations in this work a reliable solution for a new standardizable ignition source to determine the safety characteristics of hybrid dust-gas-mixtures is proposed.