• Treffer 9 von 68
Zurück zur Trefferliste

Geopolymer-bound intumescent coatings for fire protection

  • Intumescent coatings for fire protection offer advantages over (non-intumescent) cementitious coatings and boards regarding speed of construction, architectural aesthetics, sometimes costs, and other features. However, conventional organic intumescent coatings as well as soluble silicate (waterglass) coatings form foams with low mechanical stability, and the latter coatings generally suffer from low resistance against humidity. Therefore, the search for novel intumescent coatings for more demanding conditions (e.g., abrasive environments) is a necessity in the context of steadily increasing requirements of society and industry. In this contribution, we present results on intumescent aluminosilicate coatings for fire protection that form foams with significantly increased mechanical strength. Two base formulations, a metakaolin/silica-based mix, adapted from Krivenko et al., and a silica/corundum-based mix, developed at Curtin University, as well as formulations modified with additivesIntumescent coatings for fire protection offer advantages over (non-intumescent) cementitious coatings and boards regarding speed of construction, architectural aesthetics, sometimes costs, and other features. However, conventional organic intumescent coatings as well as soluble silicate (waterglass) coatings form foams with low mechanical stability, and the latter coatings generally suffer from low resistance against humidity. Therefore, the search for novel intumescent coatings for more demanding conditions (e.g., abrasive environments) is a necessity in the context of steadily increasing requirements of society and industry. In this contribution, we present results on intumescent aluminosilicate coatings for fire protection that form foams with significantly increased mechanical strength. Two base formulations, a metakaolin/silica-based mix, adapted from Krivenko et al., and a silica/corundum-based mix, developed at Curtin University, as well as formulations modified with additives (Al(OH)3, Mg(OH)2, B2O3, Na2B4O7), were applied to steel plates (75 mm × 75 mm) and exposed to simulated fire conditions (fire curve according to ISO 834-1:1999). Temperature-time curves were recorded to assess the degree at which the coatings insulated the substrate. In addition, XRD, TG, oscillatory rheometry, and SEM were employed to characterise the coatings. The coatings were observed to partly expand during hardening due to H2 formation. When the hardened coatings were exposed to elevated temperatures they intumesced as expected, with the degree and nature of expansion dependent on the formulation. Oscillatory rheometry provided insights into the intumescent processes in an apparently brittle material. It revealed that the hardened aluminosilicate coatings became viscous (loss factor > 1) at 75–225 °C, in the temperature range of major water release, as opposed to a “standard” metakaolin-based geopolymer, which continued to behave as a solid. This explains the intumes¬cent behavior of the coatings, i.e. further expansion and foam formation. Microstructural analysis confirmed pore expansion and coalescence; XRD showed that the phases formed after heating (max. temperature ~840 °C) were of ceramic-type. The fire protection (defined here as the time for the steel substrate to reach the critical temperature of 500 °C) depended mainly on the thick¬ness of the fully expanded coating, i.e. after intumescence. An alumino¬silicate coating free of additives with an original thickness of 12 mm was able to protect the steel for >30 min. The addition of 10 % anhydrous borax (Na2B4O7) caused a significant improvement, such that an original coating thickness of only 6 mm was sufficient to protect the steel for ~30 min. This was caused by the formation of sodium metaborate dihydrate (NaB(OH)4) in the coating that led to a significantly extended dehydration plateau in the temperature-time curve at ~100 °C during the fire exposure.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2018_ECI II - Intumescent coatings.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gregor GluthORCiD
Koautor*innen:Marie-Bernadette Watolla, Patrick Sturm, W.D.A. Rickard, Simone Krüger, Bernhard Schartel
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
7 Bauwerkssicherheit / 7.5 Technische Eigenschaften von Polymerwerkstoffen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Fire proofing; Fire protection; Geopolymers; Intumescence
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Fire Science
Veranstaltung:Alkali Activated Materials and Geopolymers
Veranstaltungsort:Tomar, Portugal
Beginndatum der Veranstaltung:27.05.2018
Enddatum der Veranstaltung:01.06.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:04.06.2018
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.