• Treffer 8 von 8
Zurück zur Trefferliste

Speed of sound data, derived perfect-gas heat capacities, and acoustic virial coefficients of a calibration standard natural gas mixture and a low-calorific H2-enriched mixture

  • This work aims to address the technical aspects related to the thermodynamic characterization of natural gas mixtures blended with hydrogen for the introduction of alternative energy sources within the Power-to-Gas framework. For that purpose, new experimental speed of sound data are presented in the pressure range between (0.1 up to 13) MPa and at temperatures of (260, 273.16, 300, 325, and 350) K for two mixtures qualified as primary calibration standards: a 11 component synthetic natural gas mixture (11 M), and another low-calorific H2-enriched natural gas mixture with a nominal molar percentage x(H2) = 3 %. Measurements have been gathered using a spherical acoustic resonator with an experimental expanded (k = 2) uncertainty better than 200 parts in 106 (0.02 %) in the speed of sound. The heat capacity ratio as perfect-gas gammapg, the molar heat capacity as perfect-gas Cp,m pg, and the second betaa and third gammaa acoustic virial coefficients are derived from the speed of soundThis work aims to address the technical aspects related to the thermodynamic characterization of natural gas mixtures blended with hydrogen for the introduction of alternative energy sources within the Power-to-Gas framework. For that purpose, new experimental speed of sound data are presented in the pressure range between (0.1 up to 13) MPa and at temperatures of (260, 273.16, 300, 325, and 350) K for two mixtures qualified as primary calibration standards: a 11 component synthetic natural gas mixture (11 M), and another low-calorific H2-enriched natural gas mixture with a nominal molar percentage x(H2) = 3 %. Measurements have been gathered using a spherical acoustic resonator with an experimental expanded (k = 2) uncertainty better than 200 parts in 106 (0.02 %) in the speed of sound. The heat capacity ratio as perfect-gas gammapg, the molar heat capacity as perfect-gas Cp,m pg, and the second betaa and third gammaa acoustic virial coefficients are derived from the speed of sound values. All the results are compared with the reference mixture models for natural gas-like mixtures, the AGA8-DC92 EoS and the GERG-2008 EoS, with Special attention to the impact of hydrogen on those properties. Data are found to be mostly consistent within the model uncertainty in the 11 M synthetic mixture as expected, but for the hydrogen-enriched mixture in the limit of the model uncertainty at the highest measuring pressures.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S0021961421000495-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Dirk TumaORCiD, D. Lozano-Martín, D. Vega-Maza, A. Moreau, M. C. Martín, J. J. Segovia
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Chemical Thermodynamics
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.4 Prozessanalytik
Verlag:Elsevier Ltd.
Verlagsort:Amsterdam
Jahrgang/Band:158
Erste Seite:106434
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Acoustic virial coefficients; Equations of state; Natural gas mixtures; Speed-of-sound measurements
Themenfelder/Aktivitätsfelder der BAM:Energie
DOI:10.1016/j.jct.2021.106434
ISSN:0021-9614
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.03.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:31.05.2021
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.