• Treffer 8 von 87
Zurück zur Trefferliste

The change of dna and protein radiation damage upon hydration: in-situ observations by near-ambient-pressure xps

  • X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data aboutX-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data about the degradation of single-stranded DNA binding-proteins (G5P / GV5 and hmtSSB) under vacuum and NAP-XPS conditions are presented.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2023_AVS_Marc_Hahn_DNA-NAP-XPS.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marc Benjamin HahnORCiD
Koautor*innen:P. M. Dietrich, Jörg Radnik, Tihomir Solomun, Dorothea C. Hallier, H. Seitz
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.1 Oberflächen- und Dünnschichtanalyse
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Base damage; Base loss; Cancer treatment; DEA; DET; DNA; DSB; Dosimetry; ESCA; G5P; GVP; Geant4; Geant4-DNA; Hydroxyl radical; LEE; Microdosimetry; NAP-XPS; Near ambient pressure xray photo electron spectroscopy; Prehydrated electron; Protein; Proteins; ROS; Radiation damage; Reactive oxygen species; SSB; Single-strand break (SSB); Single-stranded DNA-binding proteins; TOPAS; Xray photo electron spectrocopy
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:AVS69
Veranstaltungsort:Portland, USA
Beginndatum der Veranstaltung:05.11.2023
Enddatum der Veranstaltung:10.11.2023
Zugehöriger Identifikator:https://doi.org/10.1038/s42004-021-00487-1
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:07.11.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.