• Treffer 6 von 9
Zurück zur Trefferliste

BP153: The change of DNA radiation damage upon hydration: In-situ observation by near-ambient pressure XPS

  • Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even thoughIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • poster_dpg_2023_dresden_napXPS.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marc Benjamin Hahn
Koautor*innen:P. M. Dietrich, Jörg Radnik
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Base damage; Base loss; Cancer treatment; DNA; DNA radiation damage; Direct damage; Dissociative electron attachment (DEA); Dissociative electron transfer (DET); Dosimetry; Double-strand break (DSB); ESCA; Energy deposit; Geant4; Geant4-DNA; Hydrated DNA; Hydrated electron; Hydration shell; Hydroxyl radical; Indirect damage; Ionization; LEE; Low energy electrons; MCS; Microdosimetry; NAP-XPS; Near ambient pressure xray photo electron spectroscopy; Net-ionization reaction; OH radical; PES; Particle scattering; Prehydrated electron; Presolvated electron; Quasi-direct damage; ROS; Radiation damage; Radiation therapy; Radical; Radiolysis; Radiotherapy; Reactive oxygen species; Simulation; Single-strand break (SSB); TOPAS; TOPAS-nbio; XPS; Xray; Xray photo electron spectrocopy
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:DPG Frühjahrstagung
Veranstaltungsort:Dresden, Germany
Beginndatum der Veranstaltung:26.03.2023
Enddatum der Veranstaltung:31.03.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:03.04.2023
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.