• Treffer 8 von 10
Zurück zur Trefferliste

Comparative Study Between Simulation and Experimental Guided Ultrasonic Wave Propagation on a Plate Like Structure

  • In plate-like structures, ultrasonic waves propagate as Lamb waves. Their use is important for many applications from non-destructive testing to structural health monitoring. Efficient simulation tools contribute to a significant value add e.g. in designing systems for these applications. Under which conditions an acceptable accuracy of these models with affordable computational costs can be achieved is an open question. Many of these applications include the usage of a plane wavefront, simulated in 2D crossesctional models to reduce complexity. In this contribution, a comparative case study between simulations and experiments is presented. The aim is to verify and compare a 2D cross-sectional model with experimental data. The experimental setup for this case study consists of an aluminum plate. A rectangular piezoelectric transducer is mounted for guided wave excitation. A laser Doppler vibrometer (LDV) measures out-of-plane velocities on the plate. A 2D cross-sectional model based onIn plate-like structures, ultrasonic waves propagate as Lamb waves. Their use is important for many applications from non-destructive testing to structural health monitoring. Efficient simulation tools contribute to a significant value add e.g. in designing systems for these applications. Under which conditions an acceptable accuracy of these models with affordable computational costs can be achieved is an open question. Many of these applications include the usage of a plane wavefront, simulated in 2D crossesctional models to reduce complexity. In this contribution, a comparative case study between simulations and experiments is presented. The aim is to verify and compare a 2D cross-sectional model with experimental data. The experimental setup for this case study consists of an aluminum plate. A rectangular piezoelectric transducer is mounted for guided wave excitation. A laser Doppler vibrometer (LDV) measures out-of-plane velocities on the plate. A 2D cross-sectional model based on the Scaled Boundary Finite Element Method (SBFEM) is used to simulate the wave propagation of the experimental setup. The first data points near the transducer are used to fit the excitation tractions of the model, while additional points further away from the source are used to validate the model. The comparison between the recorded measurements and the simulated velocities shows a high degree of compatibility.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • daga23_proceedings.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Bayoumi, Daniel Lozano, Jannis BullingORCiD, I. Mueller, Jens PragerORCiD
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Deutsch):Fortschritte der Akustik - DAGA 2023
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
Herausgeber (Institution):Deutsche Gesellschaft für Akustik e.V. (DEGA)
Erste Seite:88
Letzte Seite:91
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Guided Ultrasonic Wave; Laser Doppler Vibrometer; Scaled Boundary Finite Element Method
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:DAGA 2023 - 49. Jahrestagung für Akustik
Veranstaltungsort:Hamburg, Germany
Beginndatum der Veranstaltung:06.03.2023
Enddatum der Veranstaltung:09.03.2023
ISBN:978-3-939296-21-8
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.04.2023
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.