Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-523276

Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles

  • Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cellDose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marc Benjamin HahnORCiD, J. M. Zutta Villate
Persönliche Herausgeber*innen:J. M. Zutta Villate
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Scientific Reports
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Springer Nature
Jahrgang/Band:11
Ausgabe/Heft:1
Erste Seite:6721
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:AuNP; Beta decay; Beta particle; Brachytherapy; Cancer treatment; Clustered nanoparticles; DNA; DNA damage; Dosimetry; Ectoine; Energy deposit; Gamma ray; Geant4; Geant4-DNA; Gold Nanoparticles; LEE; Livermore model; Low energy electrons; MCS; Microdosimetry; Monte-Carlo simulation; NP; OH radicals; Particle scattering; Penelope model; Radiation damage; Radiationtherapy; Radioactive decay; Radiolysis; Simulation; TOPAS; TOPAS-nbio
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
DOI:10.1038/s41598-021-85964-2
URN:urn:nbn:de:kobv:b43-523276
ISSN:2045-2322
Zugehöriger Identifikator:https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/51150
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Datum der Freischaltung:25.03.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:22.04.2021
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.