## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (61) (entfernen)

#### Schlagworte

- Ground vibration (5)
- Damage detection (4)
- Structural health monitoring (4)
- Automated operational modal analysis (3)
- Monitoring (3)
- Resonance (3)
- Subspace methods (3)
- Axial force (2)
- Bayesian analysis (2)
- Bridge (2)
- Crack (2)
- Crash-material (2)
- Crashkörper (2)
- Cyclic loading (2)
- Damage localization (2)
- Deterioration (2)
- Discrete element method (2)
- Dynamic test (2)
- Energiedissipation (2)
- Energy dissipation (2)
- Explosionsbeanspruchung (2)
- Fassadenverankerung (2)
- Façade connector (2)
- Finite element method (2)
- Fly ash (2)
- Force transfer (2)
- Imperfektion (2)
- Inspection (2)
- Metakaolin (2)
- Model updating (2)
- Optimization technique (2)
- Railway (2)
- Railway track (2)
- Slab track (2)
- Sommerfeld effect (2)
- Strain (2)
- Track-soil interaction (2)
- Truss structures (2)
- Vehicle-track interaction (2)
- Vibration (2)
- Wind turbine (2)
- Aberfan flowslide (1)
- Acoplamiento Método de los Elementos de Contorno-Método de los Elementos Finitos (1)
- Aerodynamic damping (1)
- Ambient excitation (1)
- Ambient vibration (1)
- Amplitude-distance law (1)
- Anwachsen (1)
- Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases (1)
- Axle box measurements (1)
- Axle-load spectra (1)
- BIM (1)
- Base isolation (1)
- Baustoffe (1)
- Bearing capacitiy (1)
- Bemessungskonzeptblast loads (1)
- Berechnungs- und Bemessungsverfahren - Analysis and calculation (1)
- Blast loads (1)
- Blasting charge (1)
- Boundary Element Method-Finite Element Method coupling (1)
- Boundary element method (1)
- Box-Behnken (1)
- Building materials (1)
- Cohesionless granular soil (1)
- Cohesive granular materials (1)
- Components of excitation (1)
- Compression (1)
- Conception and design (1)
- Conductors (1)
- Constitutive modeling (1)
- Continuous soil (1)
- Continuously inhomogeneous soils (1)
- Covariance analysis (1)
- Crashmaterial (1)
- Decision matrix analysis (1)
- Design guideBauwerke - Buildings (1)
- Detection (1)
- Detection of structural change (1)
- Downburst (1)
- Driving Versuche - Experimental set-ups (1)
- Drop height (1)
- Dynamic soil-structure interaction (1)
- Dynamik (1)
- Einseitenschweißung (1)
- Elastic track elements (1)
- Emission (1)
- Entwurf und Konstruktion (1)
- Entwurf und Konstruktion - Conception and Design (1)
- Environmental/operational effect (1)
- Environmental/operational effects (1)
- Ermüdung (1)
- Erosion (1)
- Erosion onset (1)
- Evolutionary computing (1)
- Experimental optical techniques RIM-PLIF (1)
- Experimental verification (1)
- Explosion (1)
- FEM-Simulation (1)
- Fatigue (1)
- Fatigue cracks (1)
- Fatigue damage (1)
- Features (1)
- Feldversuch (1)
- Field test (1)
- Field tests (1)
- Filter effect of the soil (1)
- Finite-element boundary-element method (1)
- Freileitungen (1)
- GPA (1)
- GPU Parallel computing (1)
- Geology (1)
- Geometric trackbed irregularities (1)
- Grout (1)
- Grouting (1)
- Hard object collisions (1)
- Horizontal wind turbine (1)
- Hydraulic jet erosion (1)
- Hypothesis testing (1)
- Inclination (1)
- Increase (1)
- Interacción dinámica suelo-estructura (1)
- Inverse problem (1)
- Jet erosion (1)
- Jet erosion test (1)
- Jet hydrodynamics (1)
- Jet impingement (1)
- LBM-DEM (1)
- Laminar flow (1)
- Landslide propagation modelling (1)
- Langzeitmessung (1)
- Lattice Boltzmann method (1)
- Layered soil (1)
- Layered soils (1)
- Lebensdauerabschätzung (1)
- Liquefaction analysis (1)
- Load vector (1)
- Load vectors (1)
- Long-term shrinkage (1)
- Luminescence (1)
- Mass drop (1)
- Mast- und Turmbau - Masts and towers (1)
- Material behavior (1)
- Materialkennlinie (1)
- Measurement campaigns (1)
- Measurements (1)
- Messen im Bauwesen (1)
- Micro silica (1)
- Micromechanical modelling (1)
- Microsilica (1)
- Mitigation (1)
- Mix design (1)
- Modal parameters (1)
- Modal properties (1)
- Modal property (1)
- Mouthguard (1)
- Multi-beam model (1)
- Multi-beam-on-support model (1)
- Multimodal solution (1)
- Multiple linear (1)
- Non-ballasted track (1)
- Non-synoptic wind event (1)
- Nonlinear Equation of Motion (1)
- Nonlinear Finite Element Formulations (1)
- Nonlinearities (1)
- Normal strength concrete (1)
- Novelty analysis (1)
- Numerical model (1)
- Offshore (1)
- Offshore foundation (1)
- Offshore foundations (1)
- Offshore geomechanics (1)
- Offshore-Gründung (1)
- Offshore-Windenergieanlage (1)
- Operational modal analysis (1)
- Overhead transmission line (1)
- Overhead transmission lines (1)
- Parametric excitation (1)
- Particle image velocimetry (1)
- Perzyna viscoplasticity (1)
- Piaui state (1)
- Pile bending stiffness (1)
- Pile foundation (1)
- Pile monitoring (1)
- Pore pressure accumulation (1)
- Prediction (1)
- Pressure (1)
- Prestressed concrete bridge (1)
- Principal Component Analysis (1)
- Protective component (1)
- Rail pad (1)
- Railway measurement campaign (1)
- Rammung (1)
- Ratcheting convective cell (1)
- Recovery experiments (1)
- Reduction (1)
- Rehabilitation (1)
- Reliability (1)
- Resonancia en edificaciones (1)
- Resonant response (1)
- Riveted viaducts (1)
- SPH (1)
- Sandstone (1)
- Santa-marta (1)
- Schrauben (1)
- Schutzbauteil (1)
- Schweißnahtausbildung (1)
- Serra da cangalha (1)
- Shock absorbtion (1)
- Sleeper pad (1)
- Soil erosion (1)
- Soil forces (1)
- Soil stiffness (1)
- Soil-building interaction (1)
- Stahlhochbau - Steel buildings (1)
- Stahlpfahl, gerammt (1)
- Stahlwasserbau - Steel structures for hydraulic engineering (1)
- Statistical evaluation (1)
- Statistical pattern recognition (1)
- Steel pile, driven in (1)
- Strain measurement (1)
- Strength (1)
- Structural reliability (1)
- Structural systems (1)
- Structural vibration monitoring (1)
- Subset simulation (1)
- System identification (1)
- Tagung (1)
- Target stiffness (1)
- Temperature effect (1)
- Temperature effect rejection (1)
- Temperature modeling (1)
- Track (1)
- Track damage (1)
- Track deformation (1)
- Track displacements (1)
- Track filter (1)
- Track vibration (1)
- Track-soil and vehicle-track resonances (1)
- Tragfähigkeit (1)
- Train induced ground vibration (1)
- Train passage (1)
- Train speed (1)
- Train-induced ground vibration (1)
- Turbulent Wind Excitation (1)
- Uncertainty bounds (1)
- Varying track stiffness (1)
- Vehicle-track-soil interaction (1)
- Vehicle–track interaction (1)
- Viscosity (1)
- Vorspannung (1)
- Wavenumber domain (1)
- Wavenumber integrals (1)
- Wavenumber method (1)
- Wheelset accelerations (1)
- Wind (1)
- Wind energy tower (1)
- Windenergieanlage (1)
- Workability (1)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (61) (entfernen)

In granular soils, long-term cyclically loaded structures can lead to an accumulation of irreversible strain by forming closed convective cells in the upper layer of the bedding. The size of the convective cell, its formation and grain migration inside this closed volume have been studied with reference to different stiffness of the embedded structure and different maximum force amplitudes applied at the head of the structure.
This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in a dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Furthermore, the ratcheting convective cell was also simulated with DEM with the aim of extracting some micromechanical information. The main results regarded the different development, shape and size of the convection cell and the surface settlements.

Im Rahmen des Forschungsprojekts „FIT“ wurden Ermüdungsfestigkeitsuntersuchungen an geschweißten Konstruktionsdetails, die häufig in Gründungsstrukturen von OffshoreWindenergieanlagen (OWEA), aber auch im Stahlbrückenbau eingesetzt werden, durchgeführt. Der Schwerpunkt der Untersuchungen wurde auf einseitig geschweißte Kreishohlprofile (KHP) gelegt. Für einseitig stumpfgeschweißte Kreishohlprofile wurden die derzeitigen auf unzureichender Versuchsbasis erstellten Kerbfalleinstufungen geltender Regelwerke überprüft. Hierzu wurden umfangreiche experimentelle Untersuchungen zur Ermüdungsfestigkeit dieses Details durchgeführt. Die den Ermüdungswiderstand maßgeblich beeinflussenden Parameter, wie vorhandene geometrische Imperfektionen und Schweißnahtausbildung, wurden identifiziert, bewertet und deren Einfluss im Rahmen numerischer Berechnungen untersucht. Basierend auf diesen Ergebnissen wurde eine Kerbfallempfehlung erarbeitet, die eine zutreffende Lebensdauerabschätzung ermöglicht. Diese Kerbfallempfehlung soll als Grundlage für die zukünftige Aufnahme in Normen und Regelwerke dienen.

Die Forderung, für repräsentative Bauwerke wie Botschaften und Flughäfen auch außergewöhnliche Lasten aus Explosion zu berücksichtigen, wurde in jüngerer Vergangenheit zunehmend gestellt. Das aufgrund dieser Lasten zu erwartende Schadensausmaß kann durch den Einsatz von energiedissipierenden Schutzbauteilen in der Fassadenbefestigung begrenzt werden. Die Dissipation der Explosionsenergie in den Schutzbauteilen kann beispielsweise über ein Crashmaterial erfolgen. In diesem Aufsatz werden Untersuchungen an zementgebundenen Materialien, die diesem Zweck dienen sollen, vorgestellt. Der Einfluss unterschiedlicher Zusätze auf die für ein Crashmaterial maßgebenden Eigenschaften wird in einer Parameterstudie untersucht. Als besonders geeignet wird ein Material identifiziert, bei dem die Zugabe eines Gasbildners das Matrixgefüge im Hinblick auf das gewünschte Kraft-Verformungs-Verhalten positiv verändert. Dynamische Versuche mit diesem Material geben Aufschluss über dessen Komprimierungsverhalten bei hohen Stauchraten.-----------------------------------------------------------------------------------------------------------------------------------------------
In the past few years public awareness of the need to protect structures against blast effects has risen. Energy dissipating protective components placed at the façade connectors allow protecting people in the building as well as the primary building structure from damage due to blast loads. One possibility to dissipate the blast energy is using protective components with crash material. This paper presents tests on cementitious crash materials studying the effect of different additives to the compression-behavior of the material. Additional experiments enable analyzing the material behavior under static and dynamic test conditions.

Energiedissipierende Fassadenverankerung mit Crashmaterial für explosionsbeanspruchte Gebäude
(2014)

Wenn repräsentative Bauwerke wie Botschaften und Flughäfen außergewöhnlichen Lasten aus Explosion ausgesetzt sind, dann kann das Ausmaß des zu erwartenden Schadens aus einer solchen Belastung durch den Einsatz von energiedissipierenden Schutzbauteilen in der Fassadenverankerung begrenzt werden. Bisher ist über das Tragverhalten solcher Schutzbauteile wenig bekannt. In diesem Aufsatz werden Konstruktion und Wirkungsweise einer Verankerung für vorgehängte Fassaden vorgestellt, die in der Lage sind, einen Teil der Stoßenergie über Verformung eines Crashmaterials zu dissipieren. Versuche an einer bauteilähnlichen Konstruktion liefern Informationen über das Tragverhalten der Fassadenverankerung, insbesondere bei dynamischen Belastungen. Aus den Ergebnissen wird ein Konzept für die Vordimensionierung der vorgestellten Schutzbauteile abgeleitet.-----------------------------------------------------------------------------------------------------------------------------------------------------------
In the past few years public awareness of the need to protect structures against blast effects has risen. Blast wave energy is transmitted to the supporting structure by its façade connectors. Energy dissipating protective components placed at the connectors allow protecting people in the building as well as the primary building structure from damage. In this paper we present a protective component that dissipates blast energy by crash material. The report explores the system's fundamentals of operation from an experimental point of view. The results of dynamic tests are the basis of a design concept for the protective components.

Automated modal analysis for tracking structural change during construction and operation phases
(2019)

The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions.

Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems.
In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data.

Aerodynamic damping is a decisive parameter influencing the dynamic response of overhead transmission line conductors. Methods of how to account for the effects of aerodynamic damping differ significantly and so might do the results. In this work, the source of aerodynamic damping being the result of the relative velocity between the structure and wind flow will be revised. Based on wind tunnel tests and validated by simulations, the differences of linear movement compared to a pendulum movement of a sagging cable are shown. The reasons for that Deviation are the large deflections, resulting in a movement non-parallel to the acting wind flow. For analysis in frequency domain, it is not possible to incorporate aerodynamic damping implicitly by fluid structure interaction. If the dynamic movement can be linearized at a working point of the mean deflection, a modification to the linear approach is suggested. This approach is validated by simulation with a finite element model of an existing overhead transmission line, calibrated with full scale measurements. Aerodynamic damping is incorporated in time step analysis by Rayleigh damping and modal damping. The differences between both approaches are emphasized and modal damping is shown to be the most adequate.

Measurements of downburst wind loading acting on an overhead transmission line in Northern Germany
(2017)

Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model.

This paper presents a finite element model of an overhead transmission line using so called cable elements which allow reproducing the cable's nonlinear characteristics accurately employing only a few elements. Aerodynamic damping is considered in the equation of motion by taking into account the relative velocity between the flow of the wind and the moving structure. The wind flow itself is simulated by wave superposition making necessary assumptions on the lateral correlation between the wind velocities along the cable length. As result from the simulation, the following conclusions can be drawn. The first natural frequency of generally used wide spanning cables lies well below 1 Hz where also most of the energy content of the wind excitation is to be expected. Aerodynamic damping is significant for the moving cables holding very low structural damping which leads to a suppression of resonant amplification. This is particularly of interest regarding the support reaction which is dominated by the mean value and the so called background response. The latter is mostly influenced by the randomness of the wind flow, especially lateral to the main wind direction.

Die Beanspruchung von Freileitungen erfolgt hauptsächlich durch Naturlasten. Dabei spielt für die bemessungsbestimmenden Lastfälle häufig der Wind eine entscheidende Rolle. Die Leiter, die mehrere hundert Meter weit spannen, tragen einen wesentlichen Anteil zur Gesamtbeanspruchung von Tragmasten bei, die wiederum Eigengewicht und Windlasten der Leiter zwischen zwei Abspannmasten abtragen. Wenn die Reaktion der Seile auf Starkwindereignisse abgeschätzt werden soll, müssen sowohl geometrische Nichtlinearitäten durch die großen Verformungen wie auch aerodynamische Nichtlinearitäten berücksichtigt werden. Insbesondere für die Anwendung und Berücksichtigung in Bemessungsvorschriften werden hierfür Vereinfachungen vorgenommen. In diesem Beitrag wird eine umfassende Untersuchung vorgestellt, über Naturmessungen, FEM-Simulationen kombiniert mit Windkanalversuchen und generierten Windzeitreihen. Ziel ist es, existierende Bemessungsvorschriften im Hinblick auf die Abschätzung der Beanspruchung aus Wind auf Leiter zu validieren. Hierbei sind insbesondere die Turbulenzannahmen und das dynamische Verhalten von weitgespannten Leitern wichtig, um die Extremschnittgrößen zu beschreiben. Mithilfe von so genannten Spannweitenfaktoren sollen die relevanten Parameter, wie Spannweite und Windturbulenz, bei der Beanspruchungsabschätzung berücksichtigt werden.

Windeinwirkungen auf Freileitungen wurden in der Vergangenheit meist an exponierten Standorten bestimmt. In einem Langzeitversuch wurden seit 2012 an einer mit moderner Messtechnik ausgerüsteten 380-kV-Leitung der 50 Hertz Transmission GmbH, die im nicht besonders exponierten Gelände verläuft und somit den Leitungen im Netz entspricht, die Windgeschwindigkeiten entlang der Leiter und deren Auswirkungen auf die Stützpunkte gemessen. Die Messungen und die begleitenden Auswertungen bestätigen die heute verwendeten normativen Vorgaben für die Windwirkung auf die Leiter von Freileitungen, soweit dies in der relativ kurzen Zeit von fünf Jahren möglich ist.

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.

Repair is an indispensable part of the maintenance of structures over their lifetimes. Structural grouting is a widely used remediation technique for concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. A structural grout system should be injectable in narrow spaces and hence include ingredients with finer particles. Ultrafine cements are ideal for these type of demanding grouts due to their superior properties compared to that of the less expensive, but coarser ordinary Portland cement (OPC). Supplementary cementitious materials (SCMs) are often used to replace OPC clinker based binder in order to modify certain properties and to reduce costs. The most commonly used SCMs are fly ash (FA), and ground granulated blast furnace slag (GGBS). For various special applications microsilica (MS), and metakaolin (MK) are also used. Identifying the optimum replacement contents of OPC by SCMs are a challenge during the design of such grouts. The aim of this experimental study is to investigate the effect of the selected SCMs (FA, MS and MK) on the slump flow, time of efflux, viscosity, shrinkage, and compressive and flexural strength of ultrafine cement based grouts with constant water-binder ratio and superplasticizer content. The test program was formulated using Box-Behnken design principles. Maximum percentages of replacement with ultrafine cement was 6% by volume of cement for MS and 16% for FA, and MK. The results suggest that most investigated grouts have the potential to be used for structural applications. The appropriate quadratic models are then formulated through statistical tools and presented as response surfaces. The trends indicate that fly ash improves the rheological properties, whereas microsilica and metakaolin positively affect shrinkage and mechanical properties to some extent. Based on the influence of SCMs and priorities among the properties, Decision Matrix Analysis (DMA) is carried out to select the most suitable ones among the SCMs. The analysis suggests that microsilica and fly ash are more suitable as SCMs than metakaolin without affecting the properties.

Bei Monopfahlgründungen von Offshore-Windenergieanlagen wird die Verbindung zwischen Monopfahl und Übergangsstück als geschraubter Ringflansch ausgeführt. Die zunehmende Leistungsfähigkeit der Windenergieanlagen führt zu immer größeren Schnittgrößen in diesem Anschluss. In der Folge erhöhen sich nicht nur die Querschnittsabmessungen, sondern es kommen auch zunehmend größere Schrauben zum Einsatz. Da die einschlägigen Regelwerke zur Bemessung dieser Verbindungen nicht für Schrauben der Größen M64 oder M72 konzipiert wurden, stellt sich die Frage der Übertragbarkeit auf solche Anwendungsfälle.
Im Rahmen des Aufsatzes werden Einflüsse diskutiert, die eine Herabsetzung der Schraubentragfähigkeit verursachen könnten. Diese Einflüsse, vornehmlich geometrische Imperfektionen, werden systematisch untersucht und ergänzend in praxisrelevanten Beispielen bewertet. Die somit gewonnenen Erkenntnisse werden für die abschließende Beurteilung der großen Schrauben in Ringflanschverbindungen herangezogen.

An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model. The updated system reliability is then obtained through coupling the updated deterioration model with a probabilistic structural model. The underlying high-dimensional structural reliability problems are solved using subset simulation, which is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue.

The maintenance of the transport infrastructures and their further development are going to remain focal points for investment and research in Germany in future. According to the latest development forecasts made by both the federal government and Deutsche Bahn, even if rail´s percentage share of the market were to remain unchanged, growth of around 50% would be expected in the next ten years, especially in freight traffic. This growth is necessitating considerable development both in the technical design of the tracks and in the abatement of the noise and vibration caused by railway traffic.

Der Erhalt und die Weiterentwicklung der Verkehrsinfrastrukturen werden auch zukünftig einen Investitions- und Forschungsschwerpunkt in Deutschland bilden. Gemäß den aktuellen Entwicklungsprognosen sowohl der Bundesregierung als auch der Deutschen Bahn wäre bei unveränderten Marktanteilen der Bahn eine Zunahme insbesondere des Güterverkehrs in den kommenden 10 Jahren um ca. 50% zu erwarten. Dieser Zuwachs erfordert erhebliche Entwicklungen sowohl in der technischen Konstruktion der Fahrwege als auch im Erschütterungs- und Lärmschutz infolge des Schienenverkehrs.

Cerro do Jarau is a conspicuous, circular morpho‐structural feature in Rio Grande do Sul State (Brazil), with a central elevated core in the otherwise flat “Pampas” terrain typical for the border regions between Brazil and Uruguay. The structure has a diameter of approximately 13.5 km. It is centered at 30o12′S and 56o32′W and was formed on basaltic flows of the Cretaceous Serra Geral Formation, which is part of the Paraná‐Etendeka Large Igneous Province (LIP), and in sandstones of the Botucatu and Guará formations. The structure was first spotted on aerial photographs in the 1960s. Ever since, its origin has been debated, sometimes in terms of an endogenous (igneous) origin, sometimes as the result of an exogenous (meteorite impact) event. In recent years, a number of studies have been conducted in order to investigate its nature and origin. Although the results have indicated a possible impact origin, no conclusive evidence could be produced. The interpretation of an impact origin was mostly based on the morphological characteristics of the structure; geophysical data; as well as the occurrence of different breccia types; extensive deformation/silicification of the rocks within the structure, in particular the sandstones; and also on the widespread occurrence of low‐pressure deformation features, including some planar fractures (PFs). A detailed optical microscopic analysis of samples collected during a number of field campaigns since 2007 resulted in the disclosure of a large number of quartz grains from sandstone and monomict arenite breccia from the central part of the structure with PFs and feather features (FFs), as well as a number of quartz grains exhibiting planar deformation features (PDFs). While most of these latter grains only carry a single set of PDFs, we have observed several with two sets, and one grain with three sets of PDFs. Consequently, we here propose Cerro do Jarau as the seventh confirmed impact structure in Brazil. Cerro do Jarau, together with Vargeão Dome (Santa Catalina state) and Vista Alegre (Paraná State), is one of very few impact structures on Earth formed in basaltic rocks.

The stochastic dynamic damage locating vector approach is a vibration-based damage localization method based on a finite element model of a structure and output-only measurements in both reference and damaged states. A stress field is computed for loads in the null space of a surrogate of the change in the transfer matrix at the sensor positions for some values in the Laplace domain. Then, the damage location is related to positions where the stress is close to zero. Robustness of the localization information can be achieved by aggregating results at different values in the Laplace domain. So far, this approach, and in particular the aggregation, is deterministic and does not take the uncertainty in the stress estimates into account. In this paper, the damage localization method is extended with a statistical framework. The uncertainty in the output-only measurements is propagated to the stress estimates at different values of the Laplace variable, and these estimates are aggregated based on statistical principles. The performance of the new statistical approach is demonstrated both in a numerical application and a lab experiment, showing a significant improvement of the robustness of the method due to the statistical evaluation of the localization information.

In structural parts under vibrational loading fatigue cracks can initiate and grow, which can lead to structural failure. Conventional non-destructive testing methods for crack detection provide just a snapshot of fatigue crack evolution, whereas crack luminescence coating realizes clear visibility of the entire crack formation. Fatigue causing cyclic tensile tests and examinations on special test bodies allowing control of the crack opening width demonstrate a high sensitivity of the coating.

Vibration-based model updating and identification of multiple axial forces in truss structures
(2017)

Safety assessment of existing iron and steel truss structures requires the determination of the axial Forces and corresponding stresses in truss structural members. The results of the axial force determination can be integrated as part of a structural health Monitoring scheme for existing trusses. In this work, a methodology is proposed to identify multiple axial forces in members of a truss structure based on the modal parameters. Vibration test allows the identification of the natural frequencies and mode shapes, globally of the truss structure as well as locally of the individual bars. The method calibrates the numerical model of the truss structure using a genetic algorithm and strategic validation criteria. The validation criteria are based on the identified natural frequencies and global mode shapes of the truss structure as well as information of the axial forces in the individual bars of the truss, which are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the single bars based on an analytical-based algorithm. The calibration allows the identification of the axial forces in all bars of the truss structure. For mode pairing strategy, a technique makes use of the enhanced modal assurance criteria with the calculation of the modal strain energies.
Moreover, the modal strain energies are also used to select the relevant local mode shape of the individual bars. The feasibility and accuracy of the proposed methodology is verified by laboratory experiments on several truss structures. In situ tests on existing trusses are intended. The results from one of the laboratory tested structures, i.e. a two-bar system, are included in this paper.

This paper is concerned with the inverse identification of the stress state in axially loaded slender members of iron and steel truss structures using measured dynamic data. A methodology is proposed based on the finite element model updating coupled with nature-inspired optimization techniques, in particular the particle swarm optimization. The numerical model of truss structures is calibrated using natural frequencies and mode shapes from vibration tests, as well as additional information of the axial forces in selected truss members based on the experimentally identified modal parameters. The results of the identification are the axial forces or corresponding stresses in truss structures and the joint rigidity in relation to pinned and rigid conditions. Attention is given to several examined aspects, including the effects of the axial tensile and compressive forces on the dynamic responses of trusses, mode pairing criteria, as well as modeling assumptions of joints and the use of a joint rigidity parameter. Considering the pairing of modes, it is performed by adapting an enhanced modal assurance criterion that allows the selection of desired clusters of degrees-of-freedom. Thus, information extracted from the measurements related to specific modes is utilized in a more beneficial way. For modeling of joints, the numerical model of a truss structure includes rotational springs of variable stiffness to represent semi-rigid connections. Moreover, a fixity factor is introduced for practical estimation of the joint flexibility. The effectiveness of the proposed methodology is demonstrated by case studies involving simulated and laboratory experimental data.

Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression
(2015)

Conventional approaches to model fatigue failure are based on a characterization of the lifetime as a function of the loading amplitude. The Wöhler diagram in combination with a linear damage accumulation assumption predicts the lifetime for different loading regimes. Using this phenomenological approach, the evolution of damage and inelastic strains and a redistribution of stresses cannot be modeled. The gradual degration of the material is assumed to not alter the stress state. Using the Palmgren–Miner rule for damage accumulation, order effects resulting from the non-linear response are generally neglected.
In this work, a constitutive model for concrete using continuum damage mechanics is developed. The model includes rate-dependent effects and realistically reproduces gradual performance degradation of normal strength concrete under compressive static, creep and cyclic loading in a unified framework. The damage evolution is driven by inelastic deformations and captures strain rate effects observed experimentally. Implementation details are discussed. Finally, the model is validated by comparing simulation and experimental data for creep, fatigue and triaxial compression.

This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms.
This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation.

A mechanical structure supported by nonlinear springs subjected to an external load is considered. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. If not all of the parameters are known, but the load and the displacement are measured at one location, an inverse problem exists. In the presented problem the nonlinear springs are unknown and have to be determined. At first glance a problem needs to be solved, which is underdetermined due to the number of unknown variables. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solver. This knowledge can play a decisive role in identifying the system properties and it can be easily included as boundary condition when applying evolutionary algorithm. This article examines how and under what conditions the spring resistances can be identified. The procedure is exemplified at a mechanical system of a pile foundation.

Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon
(2015)

This paper is focused on a resonance phenomenon of a wind turbine system in 5 MW class, on the basis of dynamic signals acquired continuously from the tubular tower under normal operational conditions during two years.
Firstly, technique specifications of the wind turbine system are introduced and a finite element model is developed to characterize the structural dynamic properties. The following part describes the continuous dynamic monitoring system integrated with an automated operational modal analysis procedure using the poly-reference Least Squares Complex Frequency domain (p-LSCF) method. Subsequently, variations and mutual relationships of environmental/operational factors such as vibration amplitude, temperature, wind speed, rotation speed of blades, pitch angle and nacelle direction are also presented. Finally, significant resonance is observed due to the fundamental frequency of the tower matching with the harmonic frequency induced by the rotation of three blades. As the rotation speed of rotor approaches to 8 rpm, the vibration amplitude of the tower increases significantly and the corresponding damping value decreases. With the further rising wind velocity, the rotation speed of blades stops increasing and the input energy just contribute to accumulate the vibration amplitude of tower. Such observation indicates the Sommerfeld effect that aggravates the resonance phenomenon. A vibration control device is necessary to minimize the excessive structural responses.
A companion paper will further discuss the environmental/operational effects on dynamic properties of the wind turbine system under the operational conditions.

The second part of these companion papers mainly researches environmental/operational influences on structural dynamic properties under normal operational conditions during two years, in order to extract a statistical based damage-sensitive indicator for health monitoring of a wind turbine system.
The correlation analyses between experimental identified frequencies, damping values as well as mode shapes and environmental/operational factors such as rotation speed of blades, wind speed, pitch angle, temperature and nacelle direction are presented. It is observed that the frequency estimates are influenced by the nacelle position, the activation of rotor, the rotation speed of blades and the wind speed as well as the temperature. Regarding to the damping estimates, they are mainly associated with variation of the aerodynamic damping due to the increasing wind speed. Besides, the resonance phenomenon is also observed in higher modes. The harmonic frequencies due to blades passing by tower are found and the corresponding damping value decreases. Moreover, the mode shapes in some modes are strongly affected by the position of the nacelle.
Subsequently, two types of simulated damage including the reduction of stiffness in both the rotor blade and the tubular tower are successfully detected by applying the Principal Component Analysis (PCA) based methods to these temperature-sensitive frequency estimates. Comparison of change of the extracted health features indicates that they are more sensitive with the tower damage.

This work describes a vibration-based structural health monitoring of a prestressed-concrete box girder bridge on the A100 Highway in Berlin by applying statistical pattern recognition technique to a huge amount of data continuously collected by an integrated monitoring system during the period from 2000 to 2013. Firstly, the general condition and potential damage of the bridge is described. Then, the dynamic properties are extracted from 20 velocity sensors. Environmental variability captured by five thermal transducers and traffic intensity approximately estimated by strain measurements are also reported. Nonlinear influences of temperature on natural frequencies are observed. Subsequently, the measurements during the first year are used to build a baseline health index. The multiple linear regression (MLR) method is used to characterize the nonlinear relationship between natural frequencies and temperatures. The Euclidean distance of the residual errors is calculated to build a statistical health index. Finally, the indices extracted from the following years gradually deviate; which may indicate structural deterioration due to loss of prestress in the prestressed tendons.

The implementation of continuous dynamic monitoring systems in two bridges, in Portugal, is enabled to detect the occurrence of very significant environmental and operational effects on the modal properties of these bridges, based on automated processing of massive amounts of monitoring data collected by a set of accelerometers and thermal sensors over several years.
In order to remove or mitigate such environmental/operational effects with the purpose of damage detection, two different statistical methods have been adopted. One of them is the multiple linear regression by performing nonlinear correlation analysis between measured modal properties and environmental/operational variables. Another one is principal component regression based on the identification of the linear subspace within the modal properties without using measured values of environmental and operational variables.
This paper presents a comparison of the performance of these two alternative approaches on the basis of continuous monitoring data acquired from two instrumented bridges and simulated damage scenarios. It is observed that different methods show similar capacity in removing environmental effects, and the multiple linear regression method is slightly more sensitive to structural damage.

The Westend Bridge is located on the A100 Highway in Berlin. An integrated continuous dynamic monitoring system, composed of 20 velocity sensors, 5 temperature sensors, 3 strain gauges, 1 crack sensor and 2 inclination sensors, was implemented by the Federal Institute for Materials Research and Testing in 2000. The system runs continuously with occasional intermittence and led to a huge amount of data over a 14-year span. In this article, variations of the strain, crack and inclination measurements during the last 14 years are presented. It is noted that the observed crack and inclination of the bridge are strongly influenced by seasonal temperature variation. It further induces change in the relationship between the strains measured in both concrete and prestressed tendon. Application of k-means cluster Analysis technique in both the crack and strain measurements can partition them into different seasonal phases by identifying ‘turning points’ that indicate annual periodical bridge change. In the period of these two ‘turning points’, a strong linear relation of the strains in two materials is observed. In the rest of the year, a nonlinear relationship between the strains recorded in both the concrete and the prestressed tendon is noted. The possible reason is the additional thermal load due to the change in temperature difference between the bridge’s surface and soffit. Finally, a health index in a Framework of regression model and process control theory is proposed by investigating the linear relationship between the strains in concrete and prestressed tendon. The tendency of the health index in the 14 years may suggest the long-term bridge change during that time frame.

A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions.
This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower.

Following the long tradition of the Federal Institute for Materials Research and Testing (BAM) since Adolf Martens has created first routines in failure analysis (Ruske, 1971), BAM has been frequently called-in by the Berlin Traffic Association (BVG) to carry out root-cause analyses of the Berlin suburban train line (Frahm, 1902), reported in Helmerich and Herter (1999), Helmerich (2000), Nega and Winkler (1998), Helmerich et al. (2002) and Herter et al. (2002). This was also the case in the 1990s, when BVG-inspectors found cracks in hanging, barrel-like shaped ballast plates of the Berlin underground steel viaducts during regularly scheduled inspections. Cracks were located parallel to the riveted connection between the ballast plates and the upper chord of the viaduct cross girder steel profiles. For safety reasons, the operator BVG immediately stopped the cracks by means of drilling stop holes at the crack tips. As intermediate measures, longitudinal steel profiles were spanned below the rail axes between the cross girders affected to stabilize the track in longitudinal direction. The inspection period was shortened from years to few weeks. BAM was mandated to measure strains under regular train traffic to analyze the cause of the cracks. Strains were measured in identical connections as the damaged details, which did not suffer from cracks at the time of the measurement. The traffic-induced strain cycles and thus the resulting strain differences in the questionable cross sections were higher than expected and resulted in stresses of max. 85.8 MPa. Calculations showed that the credible remaining fatigue life for this particular structural detail was exceeded after 68 years according to nowadays standards. Extensive discussions, further field and laboratory tests followed to develop a rehabilitation plan for retrofitting the structure with minimum interference of the traffic. Finally, a method with minimum intervention to the structure was elaborated by a consortium of the operator BVG, BAM and producers based on further laboratory and field tests at BAM. Now, the viaduct is saved for the future.

In the last ten years, monitoring the integrity of the civil infrastructure has been an active research topic, including in connected areas as automatic control. It is common practice to perform damage detection by detecting changes in the modal parameters between a reference state and the current (possibly damaged) state from measured vibration data. Subspace methods enjoy some popularity in structural engineering, where large model orders have to be considered. In the context of detecting changes in the structural properties and the modal parameters linked to them, a subspace-based fault detection residual has been recently proposed and applied successfully, where the estimation of the modal parameters in the possibly damaged state is avoided. However, most works assume that the unmeasured ambient excitation properties during measurements of the structure in the reference and possibly damaged condition stay constant, which is hardly satisfied by any application. This paper addresses the problem of robustness of such fault detection methods. It is explained why current algorithms from literature fail when the excitation covariance changes and how they can be modified. Then, an efficient and fast subspace-based damage detection test is derived that is robust to changes in the excitation covariance but also to numerical instabilities that can arise easily in the computations. Three numerical applications show the efficiency of the new approach to better detect and separate different levels of damage even using a relatively low sample length.

Structural health monitoring with statistical methods during progressive damage test of S101 Bridge
(2014)

For the last decades vibration based damage detection of engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in vibration based structural damage detection has been rapidly expanding from classic modal parameter estimation to modern operational monitoring. Since structures are subject to unknown ambient excitation in operation conditions, all estimates from the finite data measurements are of statistical nature. The intrinsic uncertainty due to finite data length, colored noise, non-stationary excitations, model order reduction or other operational influences needs to be considered for robust and automated structural health monitoring methods. In this paper, two subspace-based methods are considered that take these statistical uncertainties into account, first modal parameter and their confidence interval estimation for a direct comparison of the structural states, and second a statistical null space based damage detection test that completely avoids the identification step. The performance of both methods is evaluated on a large scale progressive damage test of a prestressed concrete road bridge, the S101 Bridge in Austria. In an on-site test, ambient vibration data of the S101 Bridge was recorded while different damage scenarios were introduced on the bridge as a benchmark for damage identification. It is shown that the proposed damage detection methodology is able to clearly indicate the presence of structural damage, if the damage leads to a change of the structural system.

The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal Goal of the present work is to clarify the influence of the type of viscous model—pure cohesive versus pure frictional—with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v-pw Biot–Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure Evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide).

A comprehensive numerical model for the analysis of offshore foundations under a general transient loading is presented here. The theoretical basis of the model lies on the Swansea formulation of Biot's equations of dynamic poroelasticity combined with a constitutive model that reproduces key aspects of cyclic soil behaviour in the frame of the theory of generalised plasticity. On the practical side, the adoption of appropriate finite element formulations may prevent the appearance of spurious numerical instabilities of the pore pressure field. In this respect, the use of a coupled enhanced-strain element is here proposed. On the other hand, the practicality of the presented model depends ultimately on its computational efficiency. Some practical recommendations concerning the solution strategies, the matrix storage/handling procedures and the parallel multi-processor computation are here provided. Finally, the performance of the model with a benchmark study case and its practical application to analyse the soil–structure interaction of an offshore monopile under a realistic transient storm loading are discussed.

Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

The erosion of natural sediments by a superficial fluid flow is a generic situation in many usual geological or industrial contexts. However, there is still a lack of fundamental knowledge about erosional processes, especially concerning the role of internal cohesion and adhesive stresses on issues such as the critical flow conditions for the erosion onset or the kinetics of soil mass loss. This contribution investigates the influence of cohesion on the surface erosion by an impinging jet flow based on laboratory tests with artificially bonded granular materials. The model samples are made of spherical glass beads bonded either by solid bridges made of resin or by liquid bridges made of a highly viscous oil. To quantify the intergranular cohesion, the capillary forces of the liquid bridges are here estimated by measuring their main geometrical parameters with image-processing techniques and using well-known analytical expressions. For the solid bonds, the adhesive strength of the materials is estimated by direct measurement of the yield tensile forces and stresses at the particle and sample scales, respectively, with specific traction tests developed for this purpose. The proper erosion tests are then carried out in an optically adapted device that permits a direct visualization of the scouring process at the jet apex by means of the refractive index matching technique. On this basis, the article examines qualitatively the kinetics of the scour crater excavation for both scenarios, namely, for an intergranular cohesion induced by either liquid or solid bonds. From a quantitative perspective, the critical condition for the erosion onset is discussed specifically for the case of the solid bond cohesion. In this respect, we propose here a generalized form of the Shields criterion based on a common definition of a cohesion number from yield tensile values, derived at both micro- and macroscales. The article finally shows that the proposed form manages to reconcile the experimental data for cohesive and cohesionless materials, the latter in the form of the so-called Shields curve along with some previous results of the authors which have been appropriately revisited.

In this in vitro study, the protective qualities of different mouthguard types were examined during small hard object collisions. The aim was to investigate inconclusive aspects of hard inserts, nylon nets, and air spaces as reinforcements in the anterior region and the protection qualities of ethylene vinyl acetate (EVA).
Five different mouthguards with a labial thickness between 2 mm and 11 mm made of materials of varying stiffness were investigated. As a negative control, the same experiments were performed without a mouthguard. Different combinations of EVA and labial inserts ((polyethylene terephthalate glycol-modified [PETG]), nylon mesh, air space) were tested. Using a stainless steel pendulum device, blows of different energy (0.07-2.85 joules) were applied to the center of the crown of a pivoted tooth in a custom-built jaw model. A laser Doppler vibrometer measured the tooth deflection, while an acceleration sensor attached to the pendulum measured the braking accelerations.
Tooth deflection was reduced up to 99.7% compared to no mouthguard, and the braking acceleration was reduced up to 72.2% by increasing the mouthguards' labial thickness in combination with labial inserts of different stiffness and a built-in air space between the front teeth and the mouthguard. The mouthguards made of soft materials (EVA with nylon mesh) showed slightly better protection qualities than the more rigid mouthguards of similar thickness (PETG; P<.05). However, with increasing impact energy, their protective capacities decreased to a greater extent than the stiffer mouthguards.
The combination of increased labial thickness and labial inserts of varying stiffness and eventually an air space offers the best protection capacities for hard, small object collisions.

Damage detection and localization in civil or mechanical structures is a subject of active development and research. A few vibration‐based methods have been developed so far, requiring, for example, modal parameter estimates in the reference and damaged states of the investigated structure, and for localization in addition a finite element model. For structures in operation, temperature has been shown to be a major nuisance to the efficiency of such methods because the modal parameters are varying not only with damage but also due to temperature variations. For detection, a few rejection approaches have been developed. Besides the increased complexity, environmental variation is hardly taken into account in localization approaches. In this paper, we propose a sensitivity‐based correction of the identified modal parameters in the damaged state with respect to the temperature field in the reference state, on the basis of a sensitivity analysis with respect to temperature dependent Parameters of the finite element model in the reference state. The approach is then applied to the stochastic dynamic damage locating vector method, where its improved performance under nonuniform temperature variations is shown in a numerical application on a beam.

The surface erosion of soil samples caused by an impinging jet can be analyzed using the jet erosion test (JET), a standard experimental test to characterize the erosion resistance of soils. This paper specifically addresses the flow characteristics of a laminar impinging jet over the irregular surface of granular beds to discuss the pertinence and relevance of commonly used empirical estimations based on a selfsimilar model of a free jet. The JET is here investigated at the microscale with a coupled fluid-particle flow numerical odel featuring the lattice Boltzmann method (LBM) for the fluid phase combined with the discrete element method (DEM) for the mechanical behavior of the solid particles. The hydrodynamics of a laminar plane free jet are confronted with the results from a parametric study of jet impingement, both on solid smooth and fixed granular surfaces, that take into account variations in particle size, distance from jet origin, and jet Reynolds number. The flow characteristics at the bed surface are here quantified, including the maximal values in tangential velocity and wall shear stress, which can be regarded as the major cause of particle detachments under hydrodynamic solicitation. It is shown that the maximal velocity at the impinged surface can be described by the free jet self-similar model, provided that a simple empirical coefficient is introduced. Further, an expression is proposed for the maximal shear stress in laminar conditions, including a Blasius-like friction coefficient that is inversely proportional to the square root of the jet Reynolds number. To conclude, finally, the JET erosion of different cohesionless granular samples is analyzed, confirming that the threshold condition at the onset of granular motion is consistent with the Shields diagram and in close agreement with previous experimental results.

This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward.
Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile.

Offshore-Pfähle in Mehrpfahlgründungsstrukturen wie Jacket-Gründungen müssen nach der Rammung überwiegend zyklisch axialen Belastungen widerstehen. Die Abmessungen der Pfähle werden sowohl von der inneren Tragfähigkeit und dem Ermüdungsverhalten des Stahlquerschnittes als auch von der äußeren Tragfähigkeit und der Pfahl-Boden-Interaktion bestimmt. Aufgrund der großen Zahl von Pfahlgründungen, die für aktuelle und zukünftige Windparkprojekte benötigt werden, besteht ein dringender Bedarf, die Dimensionierung und die damit verbundenen Kosten des Einzelpfahles zu optimieren. Bezüglich der Pfahltragfähigkeit sind wichtige aktuelle Forschungsthemen eine mögliche Traglaststeigerung durch Anwachsen und die geeignete Abschätzung der zyklischen Degradation. Zur Untersuchung beider Effekte wurde eine großmaßstäbliche Versuchsanlage auf dem Testgelände BAM TTS in Horstwalde nahe Berlin errichtet. Auf diesem Versuchsfeld können große Stahlrohrammpfähle zyklisch druck- und zugbelastet werden. Zudem kann die Untersuchung von Alterungseffekten durch zeitlichen Versatz zwischen den Messkampagnen untersucht werden. Erste Ergebnisse zeigen einen Anstieg der Pfahltragfähigkeit bis zu ca. 60 % nach einer Standzeit von ca. 18 Monaten. Für die Degradation der Tragfähigkeit der zyklisch belasteten Pfähle zeigen die ersten vorläufigen Ergebnisse ein zum Teil unerwartetes Verhalten. Zusätzliche Untersuchungen werden derzeit zur weiteren Abklärung durchgeführt.

Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration
(2017)

Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations.

The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage.

A survey of the phenomena and methods for floor vibrations is presented. Experimental results of floor vibrations are shown for many floors in six different buildings. The signals have been evaluated for waves and modes by simple procedures. General rules have been established between the material and the area of a specific floor, and its local eigenfrequency. The damping values of the floor vibrations have been found between D = 1 and 10 % where somewhat higher values have been measured for wooden floors, and a weak correlation with the eigenfrequency has been established. The velocities of bending waves propagating in a storey and the attenuation with distance in the building have been analysed. A considerable transfer of vibration from one room to far away parts of the building has been found in the studied buildings with concrete and wooden floors. An example building has been analysed for modes of coupled floor bays. The strong coupling of similar neighbouring floor bays would yield a wide band of global resonance frequencies. The measured wooden floor exhibits a weak coupling of the neighbouring floor bays and a narrower band of eigenfrequencies. A special method has been tested with the impulse measurements to estimate the coupled eigenmodes in presence of the high damping. From the ambient measurement, a low-frequency vibration mode has been detected which includes the vibration of the whole building and the soil. The coupling of floors to other floors and the whole building is an important phenomenon of structural dynamics which should be observed for the prediction of vibration due to internal and external sources.

Ground vibrations due to different technical sources are analysed in theory and experiment for the dispersion of Rayleigh waves and the admittance spectra. Both tasks are theoretically based on the same concept: The admittance function in frequencywavenumber domain yields the dispersion as its maxima, and the admittance function in space domain is obtained by integrating it over the wavenumbers. On the experimental side, many signal processing methods have been applied to many sites and have been developed by the authors in the last 35 years, i.e., time-domain methods, including the cross-correlation method, and frequency-domain methods such as the spectral analysis of surface waves with two or multiple sensors, the wavenumber-transform method, and the spatial autocorrelation method. All methods are presented by their basic formula and by at least one example site. Different sensor arrays and deterministic and stochastic sources have been tested for the spatial autocorrelation method and the wavenumber-transform method at several sites. In addition, all frequency-domain methods are presented for a specific layered site comparing their quality. The evaluated dispersion curves are very similar, but a somewhat higher frequency range has been found for the fastest method, i.e., the multi-sensor spectral-analysis-of-surface-waves method. The theoretical solutions have been used for the inversion of the measured dispersion to the soil profile of the specific layered soil. The theoretical soil model has subsequently been used to predict the ground vibration spectra of hammer and railway excitation that exhibit a good agreement with the corresponding measurements. Thus, the contribution shows the benefit of active and passive seismic methods for the prediction of railway vibration, including a new version of the spatial autocorrelation method for technical vibrations. On the other hand, technical and namely railway vibrations are considered a seismic source for the exploration of near surface soils.

En este artículo se presentan 2 metodologías basadas en las formulaciones del Método de los Elementos de Contorno y del Método de los Elementos Finitos para estudiar el efecto de la interacción suelo-estructura en el comportamiento dinámico de edificaciones. Se ha estudiado la respuesta de un edificio de 3 plantas producida por un campo de ondas incidente con los 2 métodos propuestos. Los resultados obtenidos presentan un buen grado de acuerdo entre ellos. A partir de estos resultados se ha validado un modelo aproximado para estudiar este tipo de problemas y se han examinado diferentes tipologías de edificaciones. Las conclusiones alcanzadas muestran que la respuesta global de las estructuras se debe a la deformación de los forjados y depende de su superficie, de las condiciones de apoyo y del acoplamiento con los forjados de la misma planta. Del mismo modo, se ha observado un acoplamiento del comportamiento de pilares y forjados cuando las rigideces de ambos son similares.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- This paper presents 2 methodologies based on the Boundary Element Method and the Finite Element Method to study soil-structure interaction effect on building behaviour. A 3-story building response induced by an incident wave field is studied using both methods. The results obtained show a good agreement. Then, a simplified model is validated from these methods and several buildings are analysed. Conclusions show that structural responses are due to floor deformation, and depend on their area, support conditions and coupling. A coupling between floors and columns when both elements have similar stiffness is also observed.

Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results.
The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces.