### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Vortrag (116)
- Zeitschriftenartikel (58)
- Beitrag zu einem Tagungsband (55)
- Beitrag zu einem Sammelband (32)
- Posterpräsentation (14)
- Forschungsbericht (6)
- Buchkapitel (1)

#### Sprache

- Englisch (141)
- Deutsch (134)
- Spanisch (5)
- Französisch (2)

#### Schlagworte

- Ground vibration (26)
- Railway track (10)
- Slab track (10)
- Track-soil interaction (9)
- Finite-element boundary-element method (8)
- Layered soil (7)
- Layered soils (7)
- Mitigation (7)
- Vehicle-track interaction (7)
- Bahnerschütterungen (6)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (89)
- 7.2 Ingenieurbau (89)

A finite-element boundary-element software for the dynamic interaction of flexible structures and the soil has been extended for pile foundation. The boundary element method for the soil uses the Green´s functions of the layered half-space which have been generalised for interior loads. Pile groups of 10 to 20 piles of different arrays are analysed and compared with single piles. Simplified models have been developed for a user-friendly, practice oriented prediction software for railway induced ground and building vibration.

A method is presented which allows to calculate the wave-field in a homogeneous or layered soil in case of a dynamic interior load. The wave propagation along the surface, the distribution of the response over the depth, the horizontal propagation at different depths and the vertical downward propagation are shown and compared with the simpler surface solution of the half-space and the interior solution of the full-space. The complete wave-field (Green's function) is applied to the dynamic behaviour of piles and pile groups by use of a boundary element formulation. The stiffness, damping and – typically for piles – mass of different groups of piles are presented. Different group effects occur for lines, circles, grids, parallels and crosses of piles, which can be regarded as oscillations around average values. Moreover, the piles and pile groups behave almost like a damper for most of the frequencies. A building on a pile group that is excited by ground vibration due to surface or interior loads shows a reduction of the wave-field due to kinematic and inertial soil–building interaction effects. The results presented lead to simplified descriptions of the wave-field due to interior loads and of the soil–pile–building interaction which can be used for the prediction of technically induced vibration.

Construction work, such as pile driving and soil compaction, or road and railway traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for nearby inhabitants. A simplified building model has been created for these situations, which includes the effects of soil-structure interaction, the low-frequency amplification along the height of the building as well as the high-frequency reduction and the floor resonances. The model consists of one wall for all supporting structures (walls and columns) and one floor for each storey. The effect of different floor resonance frequencies is included in a stochastic procedure. The soil is modelled by a spring and a viscous damper, and the free-field amplitudes of the soil are applied under this soil element.
The model can be calculated by transfer matrices or in a continuous wave-type version where an analytical solution can be evaluated numerically. The building response in the high-frequency (acoustic) region is calculated as mean values over wider frequency bands. The approach to an infinite building model can be found for these high frequencies and the corresponding soil-structure transfer can be described by the ratio of impedances at foundation level.
The rules for choosing the parameters to obtain realistic results are derived from complex calculations for example, for the stiffness and damping of building foundations and many measurements as for the damping of floor resonances. The influences on the floor resonance from the soil (damping) and the supporting structure (detuning) are important. Some more effects will be discussed by the simplified and detailed models and by measurements to establish a good understanding of ground-induced building vibrations.

Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses - the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle-track-soil interaction - have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle-track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave.

The attenuation of technically induced surface waves is studied theoretically and experimentally. In this paper, nineteen measurements of ground vibrations induced by eight different technical sources including road and rail traffic, vibratory and impulsive construction work or pile driving, explosions, hammer impulses and mass drops are described, and it is shown that the technically induced ground vibrations exhibit a power-law attenuation ν ~ r -q where the exponents q are in the range of 0.5 to 2.0 and depend on the source types. Comparisons performed demonstrate that the measured exponents are considerably higher than theoretically expected. Some potential effects on ground vibration attenuation are theoretically analyzed. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as exp(-kr), but for a broad-band excitation, the sum of the exponential laws also yields a power law but with a high exponent. Additional effects are discussed, for example the dispersion of the Rayleigh wave due to soil layering, which yields an additional exponent of 0.5 in cases of impulsive loading.

The attenuation of the amplitudes with distance of technically induced surface wave fields is analyzed in theory and experiments. Experimental results of technically induced ground vibration are presented and collected from literature, which show a power-low attenuation A ~ r–q of amplitudes A with distance r and exponents q > 0.5 higher than for elastic surface waves. Additional attenuation effects are analyzed theoretically. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as A ~ exp(–kr), but for a broadband excitation, the sum of the exponential laws yields a power law with a higher exponent. Some more effects are discussed, for example the dispersion of the Rayleigh wave due to the layering of the soil, which yields a stronger attenuation A ~ r–q–dq, including an additional exponent of dq = 0.5 in case of an impulsive loading.

Transfer admittance spectra of technically induced surface wave fields are analyzed in theory and experiments. Theoretical admittance spectra of layered soils are obtained by integration in wavenumber domain and compared with experimental admittances due to hammer or vibrator excitation. The admittance spectra are strongly influenced by the layering and damping of the soil. Deep stiff-soil layers yield a low-frequency cutoff, whereas a strong damping yields a high-frequency cutoff. A sharp cutoff in a narrow frequency band, which is measured at some sites, can be explained by a damping that increases with frequency, such as viscous material or scattering damping.