Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 9 von 1320
Zurück zur Trefferliste

Federated SHM: a Novel Collaborative ML Approach to Overcome Data Scarcity and Data Privacy Concerns in StructuralHealth Monitoring

  • The deployment of machine learning (ML) and deep learning (DL) in structural health monitoring (SHM) faces multiple challenges. Foremost among these is the insufficient availability of extensive high-quality data sets essential for robust training. Within SHM, high-quality data is defined by its accuracy, relevance, and fidelity in representing real-world structural scenarios (pristine as well as damaged). Although methods like data augmentation and creating synthetic data can add to datasets, they frequently sacrifice the authenticity and true representation of the data. Sharing real-world data encapsulating true structural and anomalous scenarios offers promise. However, entities are often reluctant to share raw data, given the potential extraction of sensitive information, leading to trust issues among collaborating entities. Our study introduces a novel methodology leveraging Federated Learning (FL) to navigate these challenges. Within the FL framework, models are trained in aThe deployment of machine learning (ML) and deep learning (DL) in structural health monitoring (SHM) faces multiple challenges. Foremost among these is the insufficient availability of extensive high-quality data sets essential for robust training. Within SHM, high-quality data is defined by its accuracy, relevance, and fidelity in representing real-world structural scenarios (pristine as well as damaged). Although methods like data augmentation and creating synthetic data can add to datasets, they frequently sacrifice the authenticity and true representation of the data. Sharing real-world data encapsulating true structural and anomalous scenarios offers promise. However, entities are often reluctant to share raw data, given the potential extraction of sensitive information, leading to trust issues among collaborating entities. Our study introduces a novel methodology leveraging Federated Learning (FL) to navigate these challenges. Within the FL framework, models are trained in a decentralized manner across different entities, preserving data privacy. In our research, we simulated several scenarios and compared them to traditional local training methods. Employing guided wave (GW) datasets, we distributed the data among different parties (clients) using IID (independent, identically distributed or in other words, statistically identical) mini batches of dataset, as well as non-IID configurations. This approach mirrors real-world data distribution among varied entities, such as hydrogen refueling stations. In our methodology, the initial round involves individualized training for each client using their unique datasets . Subsequently, the model parameters are sent to the FL server, where they are averaged to construct a global model. In the second round, this global model is disseminated back to the clients to aid in predictive tasks. This iterative process continues for several rounds to reach convergence. Our findings distinctly highlight the advantages of FL over localized training, evidenced by a marked improvement in prediction accuracy . This research underscores the potential of FL in GW-based SHM, offering a remedy to similar challenges tied to data scarcity in other SHM approaches and paving the way for a new era of collaborative, data-centric monitoring systems.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • FL_SHM_QIFORUM_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Media Ghasem Zadeh Khorasani
Koautor*innen:Bashar Albakri, Jan Heimann
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
VP Vizepräsident
VP Vizepräsident / VP.1 eScience
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Artificial intelligence; Data privacy; Federated learning; Hydrogen safety; Machine learning; Structural health monitoring
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Umwelt
Umwelt / Sensorik
Veranstaltung:QI Digital Forum
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:10.10.2023
Enddatum der Veranstaltung:11.10.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.01.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.