Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 32 von 331
Zurück zur Trefferliste

Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys

  • The phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model andThe phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model and extend it for GBs. The density-based free energy functional directly uses bulk CALPHAD thermodynamic data. The model is applied to binary and ternary Al alloys. We reveal that the elastic energy can profoundly affect the GB solubility and segregation behavior, leading to Cu segregation in otherwise Cu-depleted Al GBs. Consequently, GB segregation transition, i.e., a jump in the GB segregation as a function of alloy composition, is revealed in Al-Cu and Al-Cu-Mg alloy systems with implications for subsequent GB precipitation in these alloys. CALPHAD-informed elasticity-incorporated GB phase diagrams enable addressing a broader range of GB phenomena in engineering multi-component alloys.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • RDK_2021_CMS_ElasticDensitybased.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Lei Wang, Reza Darvishi KamachaliORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Acta Materialia
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Metallische Hochtemperaturwerkstoffe
5 Werkstofftechnik / 5.5 Materialmodellierung
Verlag:Elsevier B.V.
Jahrgang/Band:199
Erste Seite:110717
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Al alloys; CALPHAD; Density-based model; Elastic energy; Grain boundary phase diagram; Grain boundary thermodynamics
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
DOI:10.1016/j.commatsci.2021.110717
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:04.08.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:22.09.2021
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.