• Treffer 11 von 787
Zurück zur Trefferliste

Liquid Metal Embrittlement in High-Strength Steels

  • One contribution of materials science to energy efficiency is the continuous development of novel high-performance structural materials that push the strength-ductility envelope. A prominent example are modern advanced high-strength steels (AHSSs), which have enabled considerable weight reductions in the automotive sector, thereby enabling greenhouse emission reductions. To protect such advanced alloys from property degradation via corrosion, zinc (Zn) coatings are often applied through galvanization. Whilst protective, a Zn-coating comes with problems – the AHSS substrate becomes susceptible for liquid-metal embrittlement (LME) than can be the origin of significant mechanical property degradation when liquified Zn infiltrates into the steel substrate. Being for from understood, we focus here on non-cracked environments to capture the early stages of LME. This approach revealed the nucleation and growth of nano-scale intermetallic phases inside uncracked GBs (Materials Today AdvancesOne contribution of materials science to energy efficiency is the continuous development of novel high-performance structural materials that push the strength-ductility envelope. A prominent example are modern advanced high-strength steels (AHSSs), which have enabled considerable weight reductions in the automotive sector, thereby enabling greenhouse emission reductions. To protect such advanced alloys from property degradation via corrosion, zinc (Zn) coatings are often applied through galvanization. Whilst protective, a Zn-coating comes with problems – the AHSS substrate becomes susceptible for liquid-metal embrittlement (LME) than can be the origin of significant mechanical property degradation when liquified Zn infiltrates into the steel substrate. Being for from understood, we focus here on non-cracked environments to capture the early stages of LME. This approach revealed the nucleation and growth of nano-scale intermetallic phases inside uncracked GBs (Materials Today Advances 13, 100196, 2022), highlighting the complex multi-phase microstructure developing before cracking occurs. To shed further light on the early stages of LME in AHSSs, we also consider the microstructural evolution of interrupted welds. We discuss our findings in the context of the time-resolved substructure evolution right beneath the interface between the AHSS and the Zn-based coating and track how Zn progressively infiltrates the substrate along phase and grain boundaries. The experimental results are further corroborated with thermodynamic simulations.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ASATM 2023.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Robert MaaßORCiD
Koautor*innen:Yuki Ikdea, Renliang Yuan, Anirban Chakraborty, Hassan Ghassemi-Armaki, Jian-Min Zuo, Reza Kamachali
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Grain boundaries; Liquid-metal embrittlement; Micro-cracking; Steels
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen
Veranstaltung:ASATM
Veranstaltungsort:Singapore
Beginndatum der Veranstaltung:10.01.2023
Enddatum der Veranstaltung:13.01.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.07.2024
Referierte Publikation:Nein
Eingeladener Vortrag:Ja
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.