• Treffer 1 von 1
Zurück zur Trefferliste

Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z′=1 and Z′=2 forms

  • Particularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packingParticularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packing are usually behind exceptions from the hypothesis of Z′=1 forms being more stable than their higher Z′ analogues, in this case, the HAP polymorph with stronger hydrogen bonds (Z′=2) is also the one with higher density.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2017_PolymorphicPhaseTransitionin4-HAP_CrystGrDes.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Joseph, C. E. S. Bernardes, A. I. Druzhinina, R. M. Varushchenko, Thi Yen Nguyen, Franziska EmmerlingORCiD, L. Yuan, V. Dupray, G. Coquerel, M. E. Minas da Piedade
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Crystal Growth & Design
Jahr der Erstveröffentlichung:2017
Verlag:ACS
Jahrgang/Band:17
Ausgabe/Heft:4
Erste Seite:1918
Letzte Seite:1932
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:4'-hydroxyacetophenone; Polymorphic transition; Polymorphism
DOI:10.1021/acs.cgd.6b01876
ISSN:1528-7483
ISSN:1528-7505
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.05.2017
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:11.05.2017
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.