• Treffer 9 von 14
Zurück zur Trefferliste

Massenabbrandraten organischer Peroxide unter besonderer Berücksichtigung der thermischen Stabilität

  • Die Flüssigkeitstemperatur Temperatur in der flüssigen Phase unmittelbar im Grenzbereich zur Gasphase während eines Abbrandes organischer Peroxide überschreitet die Onset-Temperatur der beginnenden exothermen Zersetzungsreaktion des Peroxids, so dass diese zu berücksichtigen ist. Für die Peroxide Di-tert-butyl-Peroxid (DTBP) und tert-butyl-peroxybenzoat (TBPB) muss daher bei der Berechnung des Wärmerückstromes ein zusätzlicher Term für die Zersetzung in der Flüssigkeit additiv ergänzt werden. Der Umsatz der Zersetzungsreaktion wird unter den Bedingungen eines CSTR modelliert und erfolgt auf Basis einer Reaktionskinetik 1. Ordnung. Es kann gezeigt werden, dass der Wärmestrom in einem DTBP-Poolfeuer ≈ 40 % und einem TBPB-Poolfeuer ≈ 100 % des Wärmerückstromes durch Wärmestrahlung entspricht. Durch Q-Punkt-d können die vergleichsweise hohen Massenabbrandraten und die relative Unabhängigkeit der Massenabbrandraten vom Pooldurchmesser erklärt werden. Über eine Energiebilanz wird ein ModellDie Flüssigkeitstemperatur Temperatur in der flüssigen Phase unmittelbar im Grenzbereich zur Gasphase während eines Abbrandes organischer Peroxide überschreitet die Onset-Temperatur der beginnenden exothermen Zersetzungsreaktion des Peroxids, so dass diese zu berücksichtigen ist. Für die Peroxide Di-tert-butyl-Peroxid (DTBP) und tert-butyl-peroxybenzoat (TBPB) muss daher bei der Berechnung des Wärmerückstromes ein zusätzlicher Term für die Zersetzung in der Flüssigkeit additiv ergänzt werden. Der Umsatz der Zersetzungsreaktion wird unter den Bedingungen eines CSTR modelliert und erfolgt auf Basis einer Reaktionskinetik 1. Ordnung. Es kann gezeigt werden, dass der Wärmestrom in einem DTBP-Poolfeuer ≈ 40 % und einem TBPB-Poolfeuer ≈ 100 % des Wärmerückstromes durch Wärmestrahlung entspricht. Durch Q-Punkt-d können die vergleichsweise hohen Massenabbrandraten und die relative Unabhängigkeit der Massenabbrandraten vom Pooldurchmesser erklärt werden. Über eine Energiebilanz wird ein Modell basierend auf physikalischen Parametern entwickelt, das die Massenabbrandraten großer Poolfeuer, in sehr guter Übereinstimmung mit den experimentellen Ergebnissen, vorhersagt.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 210_20130801e.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Stefan Schälike, Kirti Bhushan Mishra, Sylvia Ziemann, Klaus-Dieter Wehrstedt, A. Schönbucher
Persönliche Herausgeber*innen:M. Beyer, T. Stolz
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Deutsch
Titel des übergeordneten Werkes (Deutsch):13. BAM/PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik
Jahr der Erstveröffentlichung:2013
Herausgeber (Institution):Bundesanstalt für Materialforschung und -prüfung (BAM)
Erste Seite:40
Letzte Seite:47
Freie Schlagwörter:Massenabbrandrate; Onset-Temperatur; Organische Peroxide; Poolfeuer; Thermische Stabilität
Veranstaltung:13. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik
Veranstaltungsort:Braunschweig, Germany
Beginndatum der Veranstaltung:18.06.2013
Enddatum der Veranstaltung:19.06.2013
DOI:10.7795/210.20130801E
ISSN:1868-5838
ISBN:978-3-95606-062-5
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.