• Treffer 1 von 3
Zurück zur Trefferliste

Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 1: Cyclic mechanical behavior under fatigue and creep-fatigue loading

  • The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach, both of which are presented in “Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based MicromechanicalThe current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach, both of which are presented in “Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model“.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • MPA-Paper_2019_BAM_ 1_Juergens.pdf
    eng
  • MPA-Proceedings_Imprint.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Maria Jürgens, Nadja Sonntag, Jürgen Olbricht, Birgit Skrotzki
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Fit for Future - Advanced Manufacturing Technologies, Materials and Lifetime - Proceedings of the 45th MPA-Seminar
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
Verlag:MPA (Materialprüfungsanstalt Universität Stuttgart)
Verlagsort:Stuttgart
Erste Seite:75
Letzte Seite:79
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Creep-Fatigue; Low Cycle Fatigue; P92; Tempered Martensite Ferritic Steels; Thermo-Mechanical Fatigue
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Thermische Kraftwerke
Veranstaltung:45. MPA-Seminar
Veranstaltungsort:Leinfelden-Echterdingen, Germany
Beginndatum der Veranstaltung:01.10.2019
Enddatum der Veranstaltung:02.10.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.01.2020
Referierte Publikation:Nein