Plasma induced generation of acoustic waves
- Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are surface or material modification, light sources and electric propulsion. Since atmosphere pressure plasma generate a huge amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder). The plasma-chemical interaction provides the most significant Impact to the generated heat and electro-hydrodynamic force, detectable by acoustic sensors. This contribution gives an overview of experimental acoustic analysis of diffuse coplanar surface dielectric barrier discharges and provides a basic physical straight-forward model. In addition to the characterization, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge typesDue to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are surface or material modification, light sources and electric propulsion. Since atmosphere pressure plasma generate a huge amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder). The plasma-chemical interaction provides the most significant Impact to the generated heat and electro-hydrodynamic force, detectable by acoustic sensors. This contribution gives an overview of experimental acoustic analysis of diffuse coplanar surface dielectric barrier discharges and provides a basic physical straight-forward model. In addition to the characterization, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented.…
Autor*innen: | Daniel Kotschate |
---|---|
Koautor*innen: | Mate Gaal, Holger Kersten, Luka Hansen |
Dokumenttyp: | Posterpräsentation |
Veröffentlichungsform: | Präsentation |
Sprache: | Deutsch |
Jahr der Erstveröffentlichung: | 2019 |
Organisationseinheit der BAM: | 8 Zerstörungsfreie Prüfung |
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren | |
DDC-Klassifikation: | Naturwissenschaften und Mathematik / Chemie / Analytische Chemie |
Freie Schlagwörter: | Atmospheric pressure plasma; Diffuse dielectric barrier discharges; Gas discharges |
Themenfelder/Aktivitätsfelder der BAM: | Chemie und Prozesstechnik |
Umwelt | |
Umwelt / Sensorik | |
Veranstaltung: | DPG Frühjahrstagung (SMuK) |
Veranstaltungsort: | Munich, Germany |
Beginndatum der Veranstaltung: | 17.03.2019 |
Enddatum der Veranstaltung: | 22.03.2019 |
Verfügbarkeit des Dokuments: | Datei im Netzwerk der BAM verfügbar ("Closed Access") |
Datum der Freischaltung: | 22.03.2019 |
Referierte Publikation: | Nein |