### Refine

#### Year of publication

#### Document Type

- In Proceedings (38)
- Article (31)
- ZIB-Report (21)
- Book chapter (5)
- Other (4)
- Book (2)
- Habilitation (1)
- Master's Thesis (1)

#### Language

- English (103)

#### Is part of the Bibliography

- no (103)

#### Keywords

#### Institute

A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.

The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results.

We consider problems concerning the scheduling of a set of trains on a single track. For every pair of trains there is a minimum headway, which every train must wait before it enters the track after another train. The speed of each train is also given. Hence for every schedule - a sequence of trains - we may compute the time that is at least needed for all trains to travel along the track in the given order. We give the solution to three problems: the fastest schedule, the average schedule, and the problem of quantile schedules. The last problem is a question about the smallest upper bound on the time of a given fraction of all possible schedules. We show how these problems are related to the travelling salesman problem. We prove NP-completeness of the fastest schedule problem, NP-hardness of quantile of schedules problem, and polynomiality of the average schedule problem. We also describe some algorithms for all three problems. In the solution of the quantile problem we give an algorithm, based on a reverse search method, generating with polynomial delay all Eulerian multigraphs with the given degree sequence and a bound on the number of such multigraphs. A better bound is left as an open question.

We consider a nonlinear nonconvex network design problem that arises, for example, in natural gas or water transmission networks. Given is such a network with active and passive components, that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes in the network. The active elements are associated with costs when used. Besides flow conservation constraints in the nodes, the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is to compute a cost minimal setting of the active components and numerical values for the flow and node potentials. We examine different (convex) relaxations for a subproblem of the design problem and benefit from them within a branch-and-bound approach. We compare different approaches based on nonlinear optimization numerically on a set of test instances.

We study System Dynamics models with several free parameters that can be altered by the user. We assume that the user's goal is to achieve a certain dynamic behavior of the model by varying these parameters. In order to the find best possible combination of parameter settings, several automatic parameter tuning methods are described in the literature and readily available within existing System Dynamic software packages. We give a survey on the available techniques in the market and describe their theoretical background. Some of these methods are already six decades old, and meanwhile newer and more powerful optimization methods have emerged in the mathematical literature. One major obstacle for their direct use are tabled data in System Dynamics models, which are usually interpreted as piecewise linear functions. However, modern optimization methods usually require smooth functions which are twice continuously differentiable. We overcome this problem by a smooth spline interpolation of the tabled data. We use a test set of three complex System Dynamic models from the literature, describe their individual transition into optimization problems, and demonstrate the applicability of modern optimization algorithms to these System Dynamics Optimization problems.

The Scenario Technique is a strategic planning method that aims to describe and analyze potential developments of a considered system in the future. Its application consists of several steps, from an initial problem analysis over an influence analysis to projections of key factors and a definition of the scenarios to a final interpretation of the results. The technique itself combines qualitative and quantitative methods and is an enhancement of the standard Scenario Technique. We use the numerical values gathered during the influence analysis, and embed them in a System Dynamics framework. This yields a mathematically rigorous way to achieve predictions of the system‘s future behavior from an initial impulse and the feedback structure of the factors. The outcome of our new method is a further way of projecting the present into the future, which enables the user of the Scenario Technique to obtain a validation of the results achieved by the standard method.

Identification of trade-offs for sustainable manufacturing of a Bamboo Bike by System Dynamics
(2013)

We develop a generic System Dynamic model to simulate the production, machines, employees, waste, and capital flows of a manufacturing company. In a second step, this model is specialised by defining suit-able input data to represent a bicycle manufacturing company in a developing country. We monitor a set of sustainability indicators to understand the social, environmental and economic impact of the company, and to estimate managerial decisions to be taken in order to improve on these criteria. We show that the social and environmental situation can be improved over time without sacrificing the economic success of the company's business.

We consider a production planning problem where two competing companies are selling their items on a common market. Moreover, the raw material used in the production is a limited non-renewable resource. The revenue per item sold depends on the total amount of items produced by both players. If they collaborate they could apply a production strategy that leads to the highest combined revenue. Usually the formation of such syndicates is prohibited by law; hence we assume that one company does not know how much the other company will produce. We formulate the problem for company A to find an optimal production plan without information on the strategy of company B as a nonlinear mathematical optimization problem. In its naive formulation the model is too large, making its solution practically impossible. After a reformulation we find a much smaller model, which we solve by spatial branch-and-cut methods and linear programming. We discuss the practical implications of our solutions.