### Refine

#### Year of publication

#### Document Type

- In Proceedings (38)
- Article (30)
- ZIB-Report (21)
- Book chapter (5)
- Other (4)
- Book (2)
- Habilitation (1)
- Master's Thesis (1)

#### Keywords

#### Institute

This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art.
There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover:
Simulation
Capacity Assessment
Network Design
Train Routing
Robust Timetabling
Event Scheduling
Track Allocation
Blocking
Shunting
Rolling Stock
Crew Scheduling
Dispatching
Delay Propagation

Algorithmenbasierte Produktentwicklung für integrale Blechbauweisen höherer Verzweigungsordnung
(2007)

We consider the following freight train routing problem (FTRP). Given is a
transportation network with fixed routes for passenger trains and a
set of freight trains (requests), each defined by an origin and
destination station pair. The objective is to calculate a feasible
route for each freight train such that a sum of all expected delays and
all running times is minimal. Previous research concentrated on
microscopic train routings for junctions or inside major stations. Only
recently approaches were developed to tackle larger corridors or even
networks. We investigate the routing problem from a strategic
perspective, calculating the routes in a macroscopic transportation
network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of
complex real-world structures are into fewer network elements. Moreover, the
departure and arrival times of freight trains are approximated.
The problem has a strategic
character since it asks only for a coarse routing through the network
without the precise timings. We give a mixed-integer nonlinear programming~(MINLP)
formulation for FTRP, which is a multi-commodity flow model on a time-expanded
graph with additional routing constraints. The model's nonlinearities are due to
an algebraic approximation of the delays of the trains on the arcs of
the network
by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP)
by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.

We consider the following freight train routing problem (FTRP).
Given is a transportation network with fixed routes for passenger
trains and a set of freight trains (requests), each defined by an
origin and destination station pair. The objective is to
calculate a feasible route for each freight train such that the
sum of all expected delays and all running times is minimal.
Previous research concentrated on microscopic train routings for
junctions or inside major stations. Only recently approaches were
developed to tackle larger corridors or even networks. We
investigate the routing problem from a strategic perspective,
calculating the routes in a macroscopic transportation network of
Deutsche Bahn AG. In this context, macroscopic refers to an
aggregation of complex and large real-world structures into fewer
network elements. Moreover, the departure and arrival times of
freight trains are approximated. The problem has a strategic
character since it asks only for a coarse routing through the
network without the precise timings. We provide a mixed-integer
nonlinear programming (MINLP) formulation for the FTRP, which is
a multicommodity flow model on a time-expanded graph with
additional routing constraints. The model’s nonlinearities
originate from an algebraic approximation of the delays of the
trains on the arcs of the network by capacity restraint
functions. The MINLP is reduced to a mixed-integer linear
model (MILP) by piecewise linear approximation. The latter is
solved by a state-of-the art MILP solver for various real-world
test instances.

The Scenario Technique is a strategic planning method that aims to describe and analyze potential developments of a considered system in the future. Its application consists of several steps, from an initial problem analysis over an influence analysis to projections of key factors and a definition of the scenarios to a final interpretation of the results. The technique itself combines qualitative and quantitative methods and is an enhancement of the standard Scenario Technique. We use the numerical values gathered during the influence analysis, and embed them in a System Dynamics framework. This yields a mathematically rigorous way to achieve predictions of the system‘s future behavior from an initial impulse and the feedback structure of the factors. The outcome of our new method is a further way of projecting the present into the future, which enables the user of the Scenario Technique to obtain a validation of the results achieved by the standard method.

In this paper, we study self-avoiding walks of a given length on a graph. We consider a formulation of this problem as a binary linear program. We analyze the polyhedral structure of the underlying polytope and describe valid inequalities. Proofs for their facial properties for certain special cases are given. In a variation of this problem one is interested in optimal configurations, where an energy function measures the benefit if certain path elements are placed on adjacent vertices of the graph. The most prominent application of this problem is the protein folding problem in biochemistry. On a set of selected instances, we demonstrate the computational merits of our approach.