004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Doctoral Thesis (105)
- Conference Proceeding (7)
- Article (3)
- Master's Thesis (1)
- Other (1)
- Preprint (1)
Has Fulltext
- yes (118)
Keywords
- Graphenzeichnen (7)
- Computersicherheit (6)
- Software Engineering (6)
- Graph (5)
- Multimedia (5)
- Programmanalyse (5)
- Information Retrieval (4)
- Modellierung (4)
- Semantic Web (4)
- Abfrageverarbeitung (3)
Institute
- Fakultät für Informatik und Mathematik (57)
- Mitarbeiter Lehrstuhl/Einrichtung der Fakultät für Informatik und Mathematik (50)
- Sonstiger Autor der Fakultät für Informatik und Mathematik (8)
- Mitarbeiter Lehrstuhl/Einrichtung der Wirtschaftswissenschaftlichen Fakultät (2)
- Institut für IT-Sicherheit und Sicherheitsrecht (ISL) (1)
- Wirtschaftswissenschaftliche Fakultät (1)
With recent progresses in the field of artificial intelligence (AI), algorithms can support more complex tasks (Frey and Osborne, 2017) that seemed safe from automation a few years ago (Brynjolfsson and McAfee, 2012). They can even outperform human decision-making in many task domains (Meehl, 1954; Dawes et al., 1989). The prominent defeat of Garry Kasparov, the world champion in chess, in 1997 is a milestone for the potentials of algorithms, increasing the value of IBM’s stock increased by $18 billion (Norvig and Russell, 2010). More recently, universal chatbots such as ChatGPT and the Bing Chatbot Sydney can influence millions of users and provide them answers to a broad range of tasks.
To gain a competitive edge, companies invest heavily in algorithmic systems (Kappelman et al., 2021), which are considered as one of the most important drivers of today’s economy (Brynjolfsson and McAfee, 2011; Hogharth and Makridakis, 1981; Önkal et al., 2019). Particularly in management accounting, an algorithmic data analysis offers the potential to support a high decision quality, making their usage a key factor for success.
However, algorithms can not only support, but also manipulate human decision-making (Roose et al., 2023). Algorithmic advice can lead to overtrust, i.e. to the heuristic replacement of vigilant information seeking and processing in favor of the advice provided (Mosier et al., 2001). The implementation of algorithmic decision support systems is thus no panacea to improve human decision-making. In contrast, they can entail new risks, such as the uncritical use of these algorithms (Boden, 2016). Yet, this ‘dark side’ of algorithms is not sufficiently investigated in the field of management accounting. With advances in machine learning, algorithmic support can become even more of a black box, blurring the reference points for evaluating its advice quality and thus increasing the risk of overtrust. Stephen Hawking even warns that AI will be “either the best, or the worst thing, ever to happen to humanity” (Alex Hern in: The Guardian: Stephen Hawking: AI will be 'either best or worst thing' for humanity, 19th October 2016). Interacting with such algorithmic systems therefore requires data literacy skills for an appropriate use. They seem to be a crucial prerequisite in today’s data-driven world to reap of the benefits of algorithmic systems. If no reflective and critical interaction between human and algorithm can be ensured, the trend towards a digitalized world will be a race against the algorithm (Brynjolfsson and McAfee, 2011).
This dissertation takes this understudied critical perspective on the increasing implementation of algorithmic systems and sheds light on different aspects of human-algorithm interaction, ranging from the ability to use data visualization tools to trust calibrations and critical evaluations of algorithmic advices. Study I investigates an adequate information representation of subjective multiple criteria decision problems, an important task in management accounting, to support human decision-making. Study II distinguishes different designs of the human-algorithm interaction investigated in the trust in automation literature and compiles factors influencing the calibration of trust and behavior toward the true capabilities of the algorithm. Study III examines the role of performance feedback on trust and advice usage in a forecasting task for a better understanding of the recently observed phenomenon ‘algorithm aversion’. Finally, Study IV focusses on the risk of overtrust in advice in repeated interactions with a forecasting advisor and investigates the calibration of advice usage. Each study thereby represents an independent contribution and contains all information relevant to the respective research questions asked in the study.
Protection blinding is a challenging issue in renewables-penetrated distribution grids and refers to a situation where a circuit breaker may not trip due to fault current contribution from distributed generation. This research addresses how the distributed generation location and capacity impact the operation of the circuit breaker in terms of the response time of the circuit breakers. The relative electrical distances of the faults and distributed generation to the circuit breakers are considered. The impact of distributed generation capacity considering the fault location is characterized using a new index called the heterogeneity index. The electrical distance between distributed generations and circuit breakers and the electrical distance between fault and circuit breaker is considered by a second new index called the electrical distance ratio. Data analysis on simulation results shows that these indices capture the phenomena of protection blinding caused by distributed generation.
Results show that a higher distributed generation penetration and faults that are electri
cally further away from a circuit breaker show severe cases of protection blinding captured by the indices. Furthermore, it is demonstrated how these indices can identify the worst impacted locations in the distribution grid. A key result is that protection blinding does not necessarily occur solely due to the presence of distributed generation between a circuit breaker and a fault, but is dependent on factors such as distributed generation location in the distribution grid, fault level, fault level distribution across the generation units and fault location.
The transition towards sustainable energy systems necessitates effective management of renewable energy sources alongside conventional grid infrastructure. This paper presents a comprehensive approach to optimizing grid management by integrating Photovoltaic (PV), wind, and grid energies to minimize costs and enhance sustainability. A key focus lies in developing an accurate scheduling algorithm utilizing Mixed Integer Programming (MIP), enabling dynamic allocation of energy resources to meet demand while minimizing reliance on cost-intensive grid energy. An ensemble learning technique, specifically a stacking algorithm, is employed to construct a robust forecasting pipeline for PV and wind energy generation. The forecasting model achieves remarkable accuracy with a Root Mean Squared Error (RMSE) of less than 0.1 for short-term (15 min and one day ahead) and long-term (one week and one month ahead) predictions. By combining optimization and forecasting methodologies, this research contributes to advancing grid management systems capable of harnessing renewable energy sources efficiently, thus facilitating cost savings and fostering sustainability in the energy sector.
In summary, this cumulative dissertation investigates the application of the conjugate gradient method CG for the optimization of artificial neural networks (NNs) and compares this method with common first-order optimization methods, especially the stochastic gradient descent (SGD).
The presented research results show that CG can effectively optimize both small and very large networks. However, the default machine precision of 32 bits can lead to problems. The best results are only achieved in 64-bits computations. The research also emphasizes the importance of the initialization of the NNs’ trainable parameters and shows that an initialization using singular value decomposition (SVD) leads to drastically lower error values. Surprisingly, shallow but wide NNs, both in Transformer and CNN architectures, often perform better than their deeper counterparts. Overall, the research results recommend a re-evaluation of the previous preference for extremely deep NNs and emphasize the potential of CG as an optimization method.
In the constrained planarity setting, we ask whether a graph admits a crossing-free drawing that additionally satisfies a given set of constraints. These constraints are often derived from very natural problems; prominent examples are Level Planarity, where vertices have to lie on given horizontal lines indicating a hierarchy, Partially Embedded Planarity, where we extend a given drawing without modifying already-drawn parts, and Clustered Planarity, where we additionally draw the boundaries of clusters which recursively group the vertices in a crossing-free manner. In the last years, the family of constrained planarity problems received a lot of attention in the field of graph drawing. Efficient algorithms were discovered for many of them, while a few others turned out to be NP-complete. In contrast to the extensive theoretical considerations and the direct motivation by applications, only very few of the found algorithms have been implemented and evaluated in practice.
The goal of this thesis is to advance the research on both theoretical as well as practical aspects of constrained planarity. On the theoretical side, we consider two types of constrained planarity problems. The first type are problems that individually constrain the rotations of vertices, that is they restrict the counter-clockwise cyclic orders of the edges incident to vertices. We give a simple linear-time algorithm for the problem Partially Embedded Planarity, which also generalizes to further constrained planarity variants of this type.
The second type of constrained planarity problem concerns more involved planarity variants that come down to the question whether there are embeddings of one or multiple graphs such that the rotations of certain vertices are in sync in a certain way. Clustered Planarity and a variant of the Simultaneous Embedding with Fixed Edges Problem (Connected SEFE-2) are well-known problems of this type. Both are generalized by our Synchronized Planarity problem, for which we give a quadratic algorithm. Through reductions from various other problems, we provide a unified modelling framework for almost all known efficiently solvable constrained planarity variants that also directly provides a quadratic-time solution to all of them.
For both our algorithms, a key ingredient for reaching an efficient solution is the usage of the right data structure for the problem at hand. In this case, these data structures are the SPQR-tree and the PC-tree, which describe planar embedding possibilities from a global and a local perspective, respectively. More specifically, PC-trees can be used to locally describe the possible cyclic orders of edges around vertices in all planar embeddings of a graph. This makes it a key component for our algorithms, as it allows us to test planarity while also respecting further constraints, and to communicate constraints arising from the surrounding graph structure between vertices with synchronized rotation.
Bridging over to the practical side, we present the first correct implementation of PC-trees. We also describe further improvements, which allow us to outperform all implementations of alternative data structures (out of which we only found very few to be fully correct) by at least a factor of 4. We show that this yields a simple and competitive planarity test that can also yield an embedding to certify planarity. We also use our PC-tree implementation to implement our quadratic algorithm for solving Synchronized Planarity. Here, we show that our algorithm greatly outperforms previous attempts at solving related problems like Clustered Planarity in practice. We also engineer its running time and show how degrees of freedom in the theoretical algorithm can be leveraged to yield an up to tenfold speed-up in practice.
Due to the increasing amount of distributed renewable energy generation and the emerging high demand at consumer connection points, e. g., electric vehicles, the power distribution grid will reach its capacity limit at peak load times if it is not expensively enhanced. Alternatively, smart flexibility management that controls user assets can help to better utilize the existing power grid infrastructure for example by sharing available grid capacity among connected electric vehicles or by disaggregating flexibility requests to hybrid photovoltaic battery energy storage systems in households. Besides maintaining an acceptable state of the power distribution grid, these smart grid applications also need to ensure a certain quality of service and provide fairness between the individual participants, both of which are not extensively discussed in the literature. This thesis investigates two smart grid applications, namely electric vehicle charging-as-a-service and flexibility-provision-as-a-service from distributed energy storage systems in private households.
The electric vehicle charging service allocation is modeled with distributed queuing-based allocation mechanisms which are compared to new probabilistic algorithms. Both integrate user constraints (arrival time, departure time, and energy required) to manage the quality of service and fairness. In the queuing-based allocation mechanisms, electric vehicle charging requests are packetized into logical charging current packets, representing the smallest controllable size of the charging process. These packets are queued at hierarchically distributed schedulers, which allocate the available charging capacity using the time and frequency division multiplexing technique known from the networking domain. This allows multiple electric vehicles to be charged simultaneously with variable charging currents. To achieve high quality of service and fairness among electric vehicle charging processes, dynamic weights are introduced into a weighted fair queuing scheduler that considers electric vehicle departure time and required energy for prioritization. The distributed probabilistic algorithms are inspired by medium access protocols from computer networking, such as binary exponential backoff, and control the quality of service and fairness by adjusting sampling windows and waiting periods based on user requirements.
The second smart grid application under investigation aims to provide flexibility provision-as-a-service that disaggregates power flexibility requests to distributed battery energy storage systems in private households. Commonly, the main purpose of stationary energy storage is to store energy from a local photovoltaic system for later use, e. g., for overnight charging of an electric vehicle. This is optimized locally by a home energy management system, which also allows the scheduling of external flexibility requests defined by the deviation from the optimal power profile at the grid connection point, for example, to perform peak shaving at the transformer. This thesis discusses a linear heuristic and a meta heuristic to disaggregate a flexibility request to the single participating energy management systems that are grouped into a flexibility pool. Thereby, the linear heuristic iteratively assigns portions of the power flexibility to the most appropriate energy management system for one time slot after another, minimizing the total flexibility cost or maximizing the probability of flexibility delivery. In addition, a multi-objective genetic algorithm is proposed that also takes into account power grid aspects, quality of service, and fairness among par-ticipating households. The genetic operators are tailored to the flexibility disaggregation search space, taking into account flexibility and energy management system constraints, and enable power-optimized buffering of fitness values.
Both smart grid applications are validated on a realistic power distribution grid with real driving patterns and energy profiles for photovoltaic generation and household consumption. The results of all proposed algorithms are analyzed with respect to a set of newly defined metrics on quality of service, fairness, efficiency, and utilization of the power distribution grid. One of the main findings is that none of the tested algorithms outperforms the others in all quality of service metrics, however, integration of user expectations improves the service quality compared to simpler approaches. Furthermore, smart grid control that incorporates users and their flexibility allows the integration of high-load applications such as electric vehicle charging and flexibility aggregation from distributed energy storage systems into the existing electricity distribution infrastructure. However, there is a trade-off between power grid aspects, e. g., grid losses and voltage values, and the quality of service provided. Whenever active user interaction is required, means of controlling the quality of service of users’ smart grid applications are necessary to ensure user satisfaction with the services provided.
The current electricity grid is undergoing major changes. There is increasing pressure to move away from power generation from fossil fuels, both due to ecological concerns and fear of dependencies on scarce natural resources. Increasing the share of decentralized generation from renewable sources is a widely accepted way to a more sustainable power infrastructure. However, this comes at the price of new challenges: generation from solar or wind power is not controllable and only forecastable with limited accuracy. To compensate for the increasing volatility in power generation, exerting control on the demand side is a promising approach. By providing flexibility on demand side, imbalances between power generation and demand may be mitigated.
This work is concerned with developing methods to provide grid support on demand side while limiting the associated costs. This is done in four major steps: first, the target power curve to follow is derived taking both goals of a grid authority and costs of the respective load into account. In the following, the special case of data centers as an instance of significant loads inside a power grid are focused on more closely. Data center services are adapted in a way such as to achieve the previously derived power curve. By means of hardware power demand models, the required adaptation of hardware utilization can be derived. The possibilities of adapting software services are investigated for the special use case of live video encoding. A method to minimize quality of experience loss while reducing power demand is presented. Finally, the possibility of applying probabilistic model checking to a continuous demand-response scenario is demonstrated.
Replacing fossil-fueled vehicles with Electric Vehicles (EVs) poses new challenges for power distribution networks. Specifically speaking, the electrification of the mobility sector relies on the ability to process and analyze information on when, where, for how long, or how fast charging processes will take place. Nevertheless, such kind of information is typically difficult to acquire or insufficiently predictable due to the dynamic nature of the system. Also, the increasing adoption rate of the renewable energy sources, specifically the domestic Photovoltaic (PV) systems, and the potentially associated grid defection scenarios will significantly impact the cost and efforts required to operate the grid in terms of power quality and demand-supply aspects. However, such emerging requirements have arguably not been taken into account when the distribution grid was built originally. Besides, expanding the distribution and transmission capacity is a very costly and lengthy process. Therefore, any proposed solution should be cost-effective as well as environment-, grid- and user-friendly. To this end, the advancements in Information and Communications Technology (ICT) are increasingly adopted and applied. This thesis addresses the rapidly growing EV sector and deals with the problems to overcome potential power quality degradation caused by the challenges mentioned above.
Since time switch and radio ripple control as existing solutions in Germany are costly and neither very effective nor scalable as it requires hardware retrofitting of existing public Charging Stations (CSs), the primary focus of this work is the development of an appropriate, standards-based, scalable, and smart charging solution of EVs. Such a solution can, in turn, boost the usage of renewable energy by ensuring that the existing grid infrastructure can operate within its permissible limits while maintaining acceptable levels of power quality.
This work introduces a new definition of the concept, “grid-friendly EV charging”, where the power demand of a CS is adjusted depending on the real-time status of a power grid. In this regard, the conflicting concerns of stakeholders in an EV ecosystem are considered. For example, a Distribution System Operator (DSO) does not want to reveal a lot of technical details about the power grid or its status. Similarly, a Charging Service Provider (CSP) wants to keep its clients happy without sharing the details of its business model with others, namely, DSOs. For that sake, a distributed smart charging architecture is proposed in this thesis. It is event-driven and responds in nearly real-time to unforeseen and critical grid situations such as high/low voltage, congestion, phase unbalance, and harmonics. In that regard, the publish/subscribe messaging pattern, used as a part of the architecture, enables an efficient and well-performing communication scheme among the different components. Moreover, an indication mechanism about the different issues in a power grid is developed; it adopts the traffic light model. It works as a black box to separate smart controllers for each CS and configured only by the CSP. Smart chargers enable a smooth adjustment of the charging power to avoid drastic changes in the grid state. To that end, two types of intelligent controllers are developed and tested. While the first controller is inspired by the fuzzy logic, the second one is inspired by the slow-start mechanism used in TCP to control congestion in computer networks.
A simulative approach is applied to evaluate the solution, thereby, a topology of a real low voltage grid with realistic load and generation profiles is used. Furthermore, a set of metrics is defined regarding the main concerns of stakeholders: voltage, overloading, fairness, the satisfaction of EV users and grid operator, as well as the grid-friendly behavior of a CS/ EV user. The evaluation shows that the solution is able to guarantee a safe operation of the grid. The proposed system can ensure a grid-friendly charging by sacrificing of a small portion of user satisfaction, that sacrifice of a user is awarded via a points-based reward system. Last but not least, the proposed distributed controllers are compared to two other controllers: (1) a decentralized controller based only on sensing the local voltage and (2) a very strict centralized controller focusing on grid-friendliness. The latter ensures proportional fairness among users regarding the objective function of the optimization problem solved in each simulation step. The distributed controllers are superior to the decentralized controller in terms of grid friendly and fairness and converge in general to the centralized one.
Online social networks provide a rich source of information about millions of users worldwide. However, due to sparsity and complex structure, analyzing these networks is quite challenging and expensive. Recently, graph embedding emerged to map networked data into low-dimensional representations, i.e. vector embeddings. These representations are fed into off-the-shelf machine learning algorithms to simplify and speed up graph analytic tasks. Given the immense importance of social network analysis, in this thesis, we aim to study graph embedding for social networks in three directions.
Firstly, we focus on social networks at microscopic level to primarily encode the structural characteristic of users' personal networks so-called ego networks. These representations are utilized in evaluation tasks whose performance depends on relational information from direct neighbors. For example, social circle prediction and event attendance inference both need structural information from neighbors in social networks.
Secondly, we explore assessing the content of vector embeddings in terms of topological properties. This could be explained via two proposed approaches: 1) a learning to rank algorithm in which the model weights reveal the importance of properties at subgraph level (ego networks), 2) a regression model for direct approximation of network statistical properties at vertex level.
Thirdly, we propose extensions of graph embedding to capture sign or additional content of social networks. Users in social media often express their feelings and attitudes towards others which forms sentiment links besides social links. We design a joint objective function whose terms capture semantics of both social and sentiment links simultaneously. We also propose a multi-task learning framework for networks with attributes and labels by stacking autoencoders. The weights of the learning tasks are automatically assigned via an adaptive loss weighting layer.
The concept of programmable networks is radically changing the way communication infrastructures are designed, integrated, and operated. Currently, the topic is spearheaded by concepts such as software-defined networking, forwarding and control element separation, and network function virtualization. Notably, software-defined networking has attracted significant attention in telecommunication and data centers and thus already in some production-grade networks.
Despite the prevalence of software-defined networking in these domains, industrial networks are yet to see its benefits to encourage adoption. However, the misconceptions around the concept itself, the role of virtualization, and algorithms pose a significant obstacle.
Furthermore, the desire to accommodate new services in the automation industry results in a pattern of constantly increasing complexity of industrial networks, which is compounded by the requirement to provide stringent deterministic service guarantees considering characteristically different applications and thus posing a significant challenge for management, configuration, and maintenance as existing solutions are architecturally inflexible.
Therefore, the first contribution of this thesis addresses the misconceptions around software-defined networking by providing a comparative analysis of programmable network concepts, detailing where software-defined networks compare with other concepts and how its principles can be leveraged to evolve industrial networks.
Armed with the fundamental principles of programmable networks, the second contribution identifies virtualization technologies and proposes novel algorithms to provide varied quality of service guarantees on converged time-sensitive Ethernet networks using software-defined networking concepts.
Finally, a performance analysis of a software-defined hybrid deployment solution for control and management of time-sensitive Ethernet networks that integrates proposed novel algorithms is presented as an industrial use-case that enables industrial operators to harness the full potential of time-sensitive networks.