The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 31 of 110
Back to Result List

Workflow-aware access control for the Internet of Things

  • IoT is defined as a paradigm where "things" have sensing, actuating, communicating, and self-configuring abilities, and are connected to each other and to the Internet. Recent advancements in the manufacturing industry have helped to produce embedded devices with various sensors and actuators in mass numbers at a reduced cost. As part of the IoT revolution, everyday devices such as television, refrigerator, cars, even industrial machines are now connected IoT devices. Recent studies have predicted that by 2025 there will be over 75 billion of such IoT devices connected to the Internet. The providers of IoT based services want to integrate their services to satisfy customer requirements. For example, in the mobility scenario, different mobility solution providers want to offer a multi-modal ticket to their customers jointly. In such a distributed and loosely coupled environment, each owner and stakeholder wants to secure his/her own integrity, confidentiality, and functionality goals. This means that distributed rules and conditionsIoT is defined as a paradigm where "things" have sensing, actuating, communicating, and self-configuring abilities, and are connected to each other and to the Internet. Recent advancements in the manufacturing industry have helped to produce embedded devices with various sensors and actuators in mass numbers at a reduced cost. As part of the IoT revolution, everyday devices such as television, refrigerator, cars, even industrial machines are now connected IoT devices. Recent studies have predicted that by 2025 there will be over 75 billion of such IoT devices connected to the Internet. The providers of IoT based services want to integrate their services to satisfy customer requirements. For example, in the mobility scenario, different mobility solution providers want to offer a multi-modal ticket to their customers jointly. In such a distributed and loosely coupled environment, each owner and stakeholder wants to secure his/her own integrity, confidentiality, and functionality goals. This means that distributed rules and conditions defined by the individual owners must be enforced on the participating entities (e.g., customers or partners using their services). The owners and stakeholders may not necessarily trust each other's actions. Therefore, a mechanism is required that guarantees the rules and conditions specified by the different owners. Attacks on IoT devices and similar computing systems are increasing and getting more advanced. IoT devices are often constrained, i.e., they have limited processing power, memory, and energy. Security mechanisms designed for traditional computing systems, e.g., computers, servers, or mobile computing devices such as smartphones, may not fit in those constrained IoT devices. Weak security mechanisms and unenforced security measures were one of the main reasons for recent successful attacks on IoT devices and services. As IoT is now used in many sensitive places, including critical infrastructures, securing them becomes more critical than ever. This thesis focuses on developing mechanisms that secure IoT devices and services and enforcing the rules and conditions specified by the owners on entities that want to access owners' resources. In classical computer systems, security automata are used for specifying security policies and monitoring mechanisms are used for enforcing such policies. For instance, a reference monitor observes and stops the execution when the security policies are about to be violated, thus, the security policies are enforced. To restrict the adversary from using protected IoT devices or services for malicious purposes, it is required to ensure that a workflow must be followed to access the protected resource. In distributed IoT systems where the policies are governed by different owners, each owner would like to specify their rules and conditions in their workflows. The workflows contain tasks that must be performed in a particular order. The goal of this thesis is to develop mechanisms to specify and enforce these workflows in the distributed IoT environment. This thesis introduces a distributed WFAC framework that restricts the entities to do only what they are allowed to do in a collaborative environment. To gain access to a service protected by the WFAC framework, every workflow participant must prove that he/she is in a particular state of an authorized workflow. Authorized means two things: (a) the owner has authorized the workflow to be executed; (b) the workflow participant is authorized to execute it. This restricts the adversary's access to the devices and its services. The security policies defined by different owners are modeled as workflows and specified using Petri Nets. The policies are then enforced with the help of the WFAC framework which supports error-handling, accountability, integration of practitioner-friendly tools, and interoperability with existing security mechanisms such as OAuth. Thus, the WFAC guarantees the integrity of workflows in a distributed environment.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Prabhakaran KasinathanORCiD
URN:urn:nbn:de:bvb:739-opus4-8915
Advisor:Joachim Posegga
Document Type:Doctoral Thesis
Language:English
Year of Completion:2021
Date of Publication (online):2021/05/17
Date of first Publication:2021/05/17
Publishing Institution:Universität Passau
Granting Institution:Universität Passau, Fakultät für Informatik und Mathematik
Date of final exam:2021/04/14
Release Date:2021/05/17
Tag:Petri Nets, Blockchain, Security; Workflow-Aware Access Control for the Internet of Things
Page Number:xxiii, 214 Seiten
Institutes:Fakultät für Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
open_access (DINI-Set):open_access
Licence (German):License LogoStandardbedingung laut Einverständniserklärung