000 Informatik, Informationswissenschaft, allgemeine Werke
Refine
Year of publication
Document Type
- Doctoral Thesis (24)
- Article (8)
- Conference Proceeding (1)
- Report (1)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- Privatsphäre (2)
- Abfragesprache (1)
- Active Learning (1)
- Allianz Aktiengesellschaft (1)
- Alltagsdigitalisierung (1)
- Anfragerelaxation (1)
- Armut (1)
- Artificial Intelligence (1)
- Avionik (1)
- Bildverarbeitung (1)
With the increasing use of digital technologies in the automotive sector, the traditional automobile is undergoing a structural transformation, requiring new technologies and enabling innovative mobility concepts.
In particular, the ability to drive automatically or even fully autonomously, update control software, and remain connected to the environment allows attackers to infiltrate highly critical vehicle systems and take control without adequate protection.
Once not only individual vehicles but entire fleets are dominated by software, cyberattacks could disrupt a significant portion of the infrastructure and expose passengers to substantial risks.
This work follows a holistic approach to protecting highly automated software-defined vehicles from cyberattacks by designing and implementing security concepts in the main phases of a vehicle's lifecycle.
We use SAE level 4 prototype vehicles to evaluate our proposed techniques.
We start with a systematic security requirement analysis using the ISA-62443 standard series, demonstrating how threats can be identified in a collaborative, hierarchical process and how the resulting security risks impact the software and hardware architecture of a self-driving vehicle.
We show how this analysis process results in concrete requirements whose consideration reduces the overall security risk to a tolerable level.
Subsequently, we develop technical solutions for selected requirements. We begin by securing the CAN and FlexRay legacy protocols, which we foresee being used in specific areas of SDV in a transitional period despite technological changes.
To enable vehicle-wide security management, we address the management and distribution of cryptographic keys within such networks, mainly focusing on resource-constrained devices.
We propose using lightweight implicit certificates for deriving cryptographic group keys that can be used in CAN networks.
Additionally, we demonstrate how the slot-based frame structure of the FlexRay protocol allows for efficient "multi-slot" authentication, for which we calculate cryptographic keys using hash-based key chains.
SDV use Ethernet-based communication protocols and custom middleware stacks to transmit large amounts of data in real-time.
We develop a three-stage security process for the novel ASOA, which enables the development and central orchestration of system-agnostic functional software components on embedded systems and HPC platforms.
After the central specification of the security architecture at the data flow level, security tokens are automatically calculated and distributed for runtime protection of the service-oriented, DDS-based data transmission.
Our process ensures the strict separation of function and system knowledge, allowing for cost-effective and adaptable security architecture management.
The evaluation in four self-driving, software-defined vehicles demonstrates an average runtime overhead of approximately 5.71%.
As the initial risk analysis and actual cyberattacks have shown, protective measures against the compromise of control units must be taken alongside communication security.
To address this, we develop a method for verifying and validating the software integrity of control units.
A governmental third party confirms a measurement through a digital certificate, proving the examined vehicle's trustworthiness and suitability for participation in automated traffic.
In the final step of this work, we present an assessment scheme that allows software-defined vehicles to evaluate security incidents during operation in terms of their maximum expected damage and initiate appropriate countermeasures.
We follow the ISO/SAE 21434 standard and model attack paths using a graph representing dependencies among internal vehicle assets to account for the propagation effects of cyberattacks.
The assessment of a security incident considers not only the probability of individual attack paths but also the vehicle context.
Our practical evaluation demonstrates that we can detect, report, and assess security incidents below the human reaction time in the earlier mentioned prototype vehicles.
The collection of personal information by organizations has become increasingly essential for social interactions. Nevertheless, according to the GDPR (General Data Protection Regulation), the organizations have to protect collected data. Access Control (AC) mechanisms are traditionally used to secure information systems against unauthorized access to sensitive data. The increased availability of personal sensor data, thanks to IoT-oriented applications, motivates new services to offer insights about individuals. Consequently, data mining algorithms have been proposed to infer personal insights from collected sensor data. Although they can be used for genuine purposes, attackers can leverage those outcomes, combining them with other type of data, and further breaching individuals’ privacy. Thus, bypassing AC mechanisms thanks to such insights is a concrete problem.
We propose an inference detection system based on the analysis of queries issued on a sensor database. The knowledge obtained through these queries, and the inference channels corresponding to the use of data mining algorithms on sensor data to infer individual information, are described using Raw sensor data based Inference ChannEl Model (RICE-M). The detection is carried out by RICE-M based inference detection System (RICE-Sy). RICE-Sy considers at the time of the query, the knowledge that a user obtains via a new query and has obtained via his query history, and determines whether this is sufficient to allow that user to operate a channel. Thus, privacy protection systems can take advantage of the inferences detected by RICE-Sy, taking into account individuals’ information obtained by the attackers via a database of sensors, to further protect these individuals.
Vanadium redox-flow batteries (VRFBs) have played a significant role in hybrid energy storage systems (HESSs) over the last few decades owing to their unique characteristics and advantages. Hence, the accurate estimation of the VRFB model holds significant importance in large-scale storage applications, as they are indispensable for incorporating the distinctive features of energy storage systems and control algorithms within embedded energy architectures. In this work, we propose a novel approach that combines model-based and data-driven techniques to predict battery state variables, i.e., the state of charge (SoC), voltage, and current. Our proposal leverages enhanced deep reinforcement learning techniques, specifically deep q-learning (DQN), by combining q-learning with neural networks to optimize the VRFB-specific parameters, ensuring a robust fit between the real and simulated data. Our proposed method outperforms the existing approach in voltage prediction. Subsequently, we enhance the proposed approach by incorporating a second deep RL algorithm—dueling DQN—which is an improvement of DQN, resulting in a 10% improvement in the results, especially in terms of voltage prediction. The proposed approach results in an accurate VFRB model that can be generalized to several types of redox-flow batteries.
The worldwide adoption of Electric Vehicles (EVs) has embraced promising advancements toward a sustainable transportation system. However, the effective charging scheduling of EVs is not a trivial task due to the increase in the load demand in the Charging Stations (CSs) and the fluctuation of electricity prices. Moreover, other issues that raise concern among EV drivers are the long waiting time and the inability to charge the battery to the desired State of Charge (SOC). In order to alleviate the range of anxiety of users, we perform a Deep Reinforcement Learning (DRL) approach that provides the optimal charging time slots for EV based on the Photovoltaic power prices, the current EV SOC, the charging connector type, and the history of load demand profiles collected in different locations. Our implemented approach maximizes the EV profit while giving a margin of liberty to the EV drivers to select the preferred CS and the best charging time (i.e., morning, afternoon, evening, or night). The results analysis proves the effectiveness of the DRL model in minimizing the charging costs of the EV up to 60%, providing a full charging experience to the EV with a lower waiting time of less than or equal to 30 min.
ChatGPT and similar generative AI models have attracted hundreds of millions of users and have become part of the public discourse. Many believe that such models will disrupt society and lead to significant changes in the education system and information generation. So far, this belief is based on either colloquial evidence or benchmarks from the owners of the models—both lack scientific rigor. We systematically assess the quality of AI-generated content through a large-scale study comparing human-written versus ChatGPT-generated argumentative student essays. We use essays that were rated by a large number of human experts (teachers). We augment the analysis by considering a set of linguistic characteristics of the generated essays. Our results demonstrate that ChatGPT generates essays that are rated higher regarding quality than human-written essays. The writing style of the AI models exhibits linguistic characteristics that are different from those of the human-written essays. Since the technology is readily available, we believe that educators must act immediately. We must re-invent homework and develop teaching concepts that utilize these AI models in the same way as math utilizes the calculator: teach the general concepts first and then use AI tools to free up time for other learning objectives.
In den vergangenen Jahrzehnten hat es unübersehbar zahlreiche Fortschritte im Bereich der IT-Sicherheitsforschung gegeben, etwa in den Bereichen Systemsicherheit und Kryptographie. Es ist jedoch genauso unübersehbar, dass IT-Sicherheitsprobleme im Alltag der Menschen fortbestehen. Mutmaßlich liegt dies an der Komplexität von Alltagssituationen, in denen Sicherheitsmechanismen und Gerätefunktionalität sowie deren Heterogenität in schwer antizipierbarer Weise mit menschlichem Verständnis und Alltagsgebrauch interagieren. Um die wissenschaftliche Forschung besser auf Menschen und deren IT-Sicherheitsbedürfnisse auszurichten, müssen wir daher den Alltag der Menschen besser verstehen. Das Verständnis von Alltag ist in der Informatik jedoch noch unterentwickelt. Dieser Beitrag möchte das Forschungsfeld “Sicherheit in der Digitalisierung des Alltags” definieren, um Forschenden die Gelegenheit zu geben, ihre Anstrengungen in diesem Bereich zu bündeln. Wir machen dabei Vorschläge einerseits zur inhaltlichen Eingrenzung der informatischen Forschung. Andererseits möchten wir durch die Einbeziehung von Forschungsmethoden aus der Ethnografie, die Erkenntnisse aus der durchaus subjektiven Beobachtung des “Alltags” vieler einzelner Individuen zieht, zur methodischen Weiterentwicklung interdisziplinärer Forschung in diesem Feld beitragen. Die IT- Sicherheitsforschung kann dann Bestehendes gezielt für eine richtige Alltagstauglichkeit optimieren und neue grundlegende Sicherheitsfunktionalitäten für die konkreten Herausforderungen im Alltag entwickeln.
Understanding of financial data has always been a point of interest for market participants to make better informed decisions. Recently, different cutting edge technologies have been addressed in the Financial Technology (FinTech) domain, including numeracy understanding, opinion mining and financial ocument processing.
In this thesis, we are interested in analyzing the arguments of financial experts with the goal of supporting investment decisions. Although various business studies confirm the crucial role of argumentation in financial communications, no work has addressed this problem as a computational argumentation task. In other words, the automatic analysis of arguments. In this regard, this thesis presents contributions in the three essential axes of theory, data, and evaluation to fill the gap between argument mining and financial text.
First, we propose a method for determining the structure of the arguments stated by company representatives during the public announcement of their quarterly results and future estimations through earnings conference calls. The proposed scheme is derived from argumentation theory at the micro-structure level of discourse. We further conducted the corresponding annotation study and published the first financial dataset annotated with arguments: FinArg.
Moreover, we investigate the question of evaluating the quality of arguments in this financial genre of text. To tackle this challenge, we suggest using two levels of quality metrics, considering both the Natural Language Processing (NLP) literature of argument quality assessment and the financial era peculiarities.
Hence, we have also enriched the FinArg data with our quality dimensions to produce the FinArgQuality dataset.
In terms of evaluation, we validate the principle of ensemble learning on the argument identification and argument unit classification tasks. We show that combining a traditional machine learning model along with a deep learning one, via an integration model (stacking), improves the overall performance, especially in small dataset settings.
In addition, despite the fact that argument mining is mainly a domain dependent task, to this date, the number of studies that tackle the generalization of argument mining models is still relatively small. Therefore, using our stacking approach and in comparison to the transfer learning model of DistilBert, we address and analyze three real-world scenarios concerning the model robustness over completely unseen domains and unseen topics.
Furthermore, with the aim of the automatic assessment of argument strength, we have investigated and compared different (refined) versions of Bert-based models that incorporate external knowledge in the decision layer. Consequently, our method outperforms the baseline model by 13 ± 2% in terms of F1-score through integrating Bert with encoded categorical features.
Beyond our theoretical and methodological proposals, our model of argument quality assessment, annotated corpora, and evaluation approaches are publicly available, and can serve as strong baselines for future work in both FinNLP and computational argumentation domains.
Hence, directly exploiting this thesis, we proposed to the community, a new task/challenge related to the analysis of financial arguments: FinArg-1, within the framework of the NTCIR-17 conference.
We also used our proposals to react to the Touché challenge at the CLEF 2021 conference. Our contribution was selected among the «Best of Labs».
In the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) are designed to provide low energy consumption while maintaining a long communications’ range for End Devices (EDs). LoRa is a communication protocol that can cover a wide range with low energy consumption. To evaluate the efficiency of the LoRa Wide-Area Network (LoRaWAN), three criteria can be considered, namely, the Packet Delivery Rate (PDR), Energy Consumption (EC), and coverage area. A set of transmission parameters have to be configured to establish a communication link. These parameters can affect the data rate, noise resistance, receiver sensitivity, and EC. The Adaptive Data Rate (ADR) algorithm is a mechanism to configure the transmission parameters of EDs aiming to improve the PDR. Therefore, we introduce a new algorithm using the Multi-Armed Bandit (MAB) technique, to configure the EDs’ transmission parameters in a centralized manner on the Network Server (NS) side, while improving the EC, too. The performance of the proposed algorithm, the Low-Power Multi-Armed Bandit (LP-MAB), is evaluated through simulation results and is compared with other approaches in different scenarios. The simulation results indicate that the LP-MAB’s EC outperforms other algorithms while maintaining a relatively high PDR in various circumstances.
After the enactment of the GDPR in 2018, many companies were forced to rethink their privacy management in order to comply with the new legal framework. These changes mostly affect the Controller to achieve GDPR-compliant privacy policies and management.However, measures to give users a better understanding of privacy, which is essential to generate legitimate interest in the Controller, are often skipped. We recommend addressing this issue by the usage of privacy preference languages, whereas users define rules regarding their preferences for privacy handling. In the literature, preference languages only work with their corresponding privacy language, which limits their applicability. In this paper, we propose the ConTra preference language, which we envision to support users during privacy policy negotiation while meeting current technical and legal requirements. Therefore, ConTra preferences are defined showing its expressiveness, extensibility, and applicability in resource-limited IoT scenarios. In addition, we introduce a generic approach which provides privacy language compatibility for unified preference matching.
Network communication has become a part of everyday life, and the interconnection among devices and people will increase even more in the future. A new area where this development is on the rise is the field of connected vehicles. It is especially useful for automated vehicles in order to connect the vehicles with other road users or cloud services. In particular for the latter it is beneficial to establish a mobile network connection, as it is already widely used and no additional infrastructure is needed. With the use of network communication, certain requirements come along.
One of them is the reliability of the connection. Certain Quality of Service (QoS) parameters need to be met. In case of degraded QoS, according to the SAE level specification, a downgrade of the automated system can be required, which may lead to a takeover maneuver, in which control is returned back to the driver. Since such a handover takes time, prediction is necessary to forecast the network quality for the next few seconds. Prediction of QoS parameters, especially in terms of Throughput (TP) and Latency (LA), is still a challenging task, as the wireless transmission properties of a moving mobile network connection are undergoing fluctuation. In this thesis, a new approach for prediction Network Quality Parameters (NQPs) on Transmission Control Protocol (TCP) level is presented. It combines the knowledge of the environment with the low level parameters of the mobile network. The aim of this work is to perform a comprehensive study of various models including both Location Smoothing (LS) grid maps and Learning Based (LB) regression ones. Moreover, the possibility of using the location independence of a model as well as suitability for automated driving is evaluated.