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Abstract

Internet-of-Things (IoT) is defined as a paradigm where “things” have sensing,
actuating, communicating, and self-configuring abilities, and are connected to each
other and to the Internet. Recent advancements in the manufacturing industry
have helped to produce embedded devices with various sensors and actuators in
mass numbers at a reduced cost. As part of the IoT revolution, everyday devices
such as television, refrigerator, cars, even industrial machines are now connected
IoT devices. Recent studies have predicted that by 2025 there will be over 75 billion
of such IoT devices connected to the Internet.

The providers of IoT based services want to integrate their services to satisfy cus-
tomer requirements. For example, in the mobility scenario, different mobility so-
lution providers want to offer a multi-modal ticket to their customers jointly. In
such a distributed and loosely coupled environment, each owner and stakeholder
wants to secure his/her own integrity, confidentiality, and functionality goals. This
means that distributed rules and conditions defined by the individual owners must
be enforced on the participating entities (e.g., customers or partners using their
services). The owners and stakeholders may not necessarily trust each other’s ac-
tions. Therefore, a mechanism is required that guarantees the rules and conditions
specified by the different owners.

Attacks on IoT devices and similar computing systems are increasing and getting
more advanced. IoT devices are often constrained, i.e., they have limited pro-
cessing power, memory, and energy. Security mechanisms designed for traditional
computing systems, e.g., computers, servers, or mobile computing devices such as
smartphones, may not fit in those constrained IoT devices. Weak security mech-
anisms and unenforced security measures were one of the main reasons for recent
successful attacks on IoT devices and services. As IoT is now used in many sensitive
places, including critical infrastructures, securing them becomes more critical than
ever. This thesis focuses on developing mechanisms that secure IoT devices and
services and enforcing the rules and conditions specified by the owners on entities
that want to access owners’ resources.

In classical computer systems, security automata are used for specifying security
policies and monitoring mechanisms are used for enforcing such policies. For in-
stance, a reference monitor observes and stops the execution when the security
policies are about to be violated, thus, the security policies are enforced. To restrict
the adversary from using protected IoT devices or services for malicious purposes,

vii



it is required to ensure that a workflow must be followed to access the protected
resource. In distributed IoT systems where the policies are governed by differ-
ent owners, each owner would like to specify their rules and conditions in their
workflows. The workflows contain tasks that must be performed in a particular
order. The goal of this thesis is to develop mechanisms to specify and enforce these
workflows in the distributed IoT environment.

This thesis introduces a distributed Workflow-Aware (or Workflow-Driven) Access
Control (WFAC) framework that restricts the entities to do only what they are
allowed to do in a collaborative environment. To gain access to a service protected
by the WFAC framework, every workflow participant must prove that he/she is in
a particular state of an authorized workflow. Authorized means two things: (a) the
owner has authorized the workflow to be executed; (b) the workflow participant
is authorized to execute it. This restricts the adversary’s access to the devices
and its services. The security policies defined by different owners are modeled
as workflows and specified using Petri Nets. The policies are then enforced with
the help of the WFAC framework which supports error-handling, accountability,
integration of practitioner-friendly tools, and interoperability with existing security
mechanisms such as OAuth. Thus, the WFAC guarantees the integrity of workflows
in a distributed environment.
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Thesis Outline

This thesis is organized into five main parts and appendices. Each part is divided
into several chapters.

• Part I presents the introduction, problem statement, methodology, contribu-
tions of the thesis, the scope of the thesis, and challenges and requirements
focused on this thesis.

• Part II describes existing background research, related work, and state-of-
the-art mechanisms on the topics that are focused on this thesis.

• Part III presents the contributions of this thesis that address the research
issues presented earlier in part I of this thesis.

• Part IV discusses the evaluation of the proposed framework and mechanisms.
Standard methodologies are used to evaluate the framework, protocols, and
mechanisms presented in the thesis. Use cases are described and evaluated
using the introduced approach.

• Part V discusses the conclusion of the thesis by highlighting the capabilities
and limitations of the introduced approach. Also, it proposes future research
directions through which this research work can be extended.

• Finally, Part VI includes additional information that provides examples and
implementation details.
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Chapter 1

Introduction

This thesis focuses on developing security mechanisms to protect and secure the
Internet-of-Things (IoT). IoT is defined as a paradigm where “things” have sensing,
actuating, communicating, and self-configuring abilities and are connected to the
Internet. Recent studies have predicted that by 2025 there will be over 75 billion
of such IoT devices connected to the Internet 1. Nowadays, IoT is used in different
application domains and platforms, including critical infrastructures and industrial
systems such as energy generation, health care, and water supply systems. Some
IoT devices may have constraints in terms of processing power, memory, stor-
age, and energy source, therefore, conventional security mechanisms developed for
standard computing systems such as Internet Protocol Security (IPSec), Transport
Layer Security (TLS), and Hypertext Transfer Protocol Secure (HTTPS) may not
fit in IoT [4]. In particular, IoT devices are more vulnerable to attacks because of
their characteristics such as constraints (processing, memory, power, and storage),
direct or indirect connection to the Internet, and physical accessibility (e.g., with-
out physical security measures) [5]. Most of the IoT applications are distributed
and the devices usually communicate with their master nodes to make access con-
trol decisions and in some situations, the devices themselves make their own access
control decisions.

Attacks on IoT and other similar computing systems that are connected to the
Internet are evolving rapidly. A successful attack on such critical infrastructures will
have serious impacts on the economy, essential commodities, and even on human
safety [6]. Recent attacks on IoT systems, in particular, on critical infrastructures
are presented by Stellios et al., in their survey paper [7] and the results showed that
the attacks happened because of one or more of the following characteristics: (a)
physical access to IoT device; (b) connectivity to IoT devices; and (b) unnecessary
functionality exposed by IoT devices. An example of attacks on consumer IoT
devices is the Mirai botnet attack (see [8]), where people failed to enforce some
basic best security practices such as changing the default username/password or
using strong credentials. In general, the above mentioned attacks show that IoT
devices are poorly protected, and when IoT devices used in critical infrastructure

1https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html
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are compromised, then the damage can be really serious, therefore, IoT must be
protected. This is one of the main motivations of this thesis.

In critical infrastructure and safety systems, protecting and guaranteeing the in-
tegrity and availability goals of the IoT system is more important than protecting
the confidentiality goals [9]. These goals are usually use case specific and when
they are elaborated, they transform into a set of rules and conditions that must
be followed in a predefined order and this is known as a workflow. A detailed def-
inition of workflow is presented later in this thesis in Sec. 9.2. To ensure correct
and safe operation of distributed IoT systems the integrity of the workflow must
be guaranteed. Therefore, enforcing a “need to access” principle is required which
is an integrity policy in contrast to the well-known confidentiality policy known as
the need to know or principle of least privilege.

In a typical IoT application scenario, different entities provide and consume services
from one another. Each owner that provides a service wants to enforce some spe-
cific conditions (e.g., integrity, confidentiality, and functionality conditions) on the
consumers of the service. One of the main issues in such multi-tenant distributed
IoT systems and architecture is the trust issue which is explained in the following
example.

Definition 1.1 (Trust). “A characteristic of an entity that indicates its ability to
perform certain functions or services correctly, fairly and impartially, along with
assurance that the entity and its identifier are genuine” (see [10]).

Example:

Assume that three owners (A, B, and C) agreed to a workflow to provide
integrated services to their customers or end-users (i.e., consumers). All owners
want their customers to behave in a particular way defined by each of them
i.e., by means of a commonly agreed workflow. Ideally, the owner would like
to specify a workflow in a particular language that declares owner’s rules and
conditions. Also, this workflow should be binding and guarantee the consumer
about the commitment of the owners. The challenges here are the following:
(a) How can the owner-A trust other parties (e.g., owner-B, owner-C) and their
services to behave according to the agreed workflow? (b) How can the owner
be sure that the consumers do not cheat?

The use case presented above is only an example of a distributed IoT scenario. In
Part Evaluation (IV) - Sec. 15, this thesis discusses further several IoT use cases
and scenarios and how the proposed approach addresses them. Those use cases
are used to derive the problem statement, goals, and requirements focused on this
thesis. The methodology is presented in Sec. 1.3.
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Also, usability and interoperability features play an important role in any tech-
nology to be adopted by the industrial community i.e., the proposed or developed
method must be easy to understand, interoperable with conventional protocols,
security mechanisms, and standards such as Authentication and Authorization for
Constrained Environments (ACE) and Web Authorization (OAuth). For instance,
during the workflow execution, if there are any foreseen or unforeseen error condi-
tions, then the proposed framework should have the ability to process them and if
possible, recover from the issues.

1.1 Problem Statement

The overall aim of this thesis is to investigate and develop security mechanisms
that restrict an adversary from accessing or using IoT devices and services exposed
by them for malicious purposes. To achieve this, this thesis focuses on developing a
framework where the owners can specify and enforce workflows on end-users access-
ing their IoT devices or services. In an integrated and distributed IoT application,
there will different IoT devices and services provided by different owners. There-
fore, the owners might not necessarily trust other owner’s (or service provider’s)
actions. Therefore, an accountability mechanism is required to enforce workflows
in a distributed IoT environment.

1.1.1 Research Questions

The research questions of this thesis are the following:

RQ 1: How to bind access control to the tasks to be executed in a workflow?

RQ 2: How to guarantee the integrity of the workflows in a distributed envi-
ronment without the use of centralized workflow manager and without requiring
continuous synchronization with workflow servers?

RQ 3: How to model and specify such workflows in a user-friendly way and how
to integrate practitioner-friendly tools and interoperable security mechanisms?

RQ 4: How to handle error conditions?

RQ 5: How to integrate accountability features without using a centralized
trusted party?
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1.1.2 Goals

Based on the research questions, the goal of this thesis is to design and develop
mechanisms that ensure that the consumers obey the workflows or contracts defined
by the owners in a distributed environment, particularly, supporting distributed IoT
applications. This goal can be divided into the following parts:

• (a) Identify or develop a workflow specification language that can support
conditions defined by different owners - related to RQ 1.

• (b) Develop a framework that enforces and guarantees workflow integrity.
Precisely, the entities participating in the workflow should be able to access
the resources only when the workflow is executed as specified, i.e., a method
that binds access control to the tasks specified in workflows - related to RQ
2 .

• (c) The developed framework should be easy to understand, modular and
interoperable, support integration of practitioner-friendly tools, and have the
ability to handle foreseen and unforeseen error situations - related to RQ 3
and RQ 4.

• (d) The developed framework should support accountability features in a dis-
tributed environment. A method should guarantee that entities participating
in the workflow are held accountable for their actions without using a trusted
third party or a trusted centralized database - related to RQ 5.

1.2 Related Work

This section presents only the highlights of the related work of this thesis. The
Chap. 8 presents an in-depth analysis of related work.

In computer security, a security policy can be defined “as a statement that says
what is and what is not, allowed” [11]. For instance, the Biba integrity model
[12], and the Clark-Wilson model [13] are integrity policies that focus on protecting
data integrity whereas, the Bell-LaPadula model [14] is a confidentiality policy that
focuses on protecting data confidentiality.

Fred Schneider introduced security automata in [15] for enforcing such confiden-
tiality and integrity policies in a computer system. Basin in [16] studied further
in detail what conditions and policies are enforceable. Service Automata presented
by Gay et al., in [17] extended the concept of security automata to enforce security
policies in a distributed fashion, it uses a coordinator to exchange and synchronize
information with other service automata, and a traditional reference monitor to
enforce local policies. Basin et al., in [18] presented a process algebra-based ap-
proach to align security and business objectives. The aforementioned approaches
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do not support the loosely coupled distributed architecture common in IoT where
devices work autonomously without permanently having to synchronize with their
manager.

An approach to enforce processes on IoT is presented by Tandon et al., in [19]
called “History-based Capability systems for IoT” (HCAP) extends the concepts of
Security Automata to IoT environment, but the HCAP approach has its limitations
because of the following reasons:

• (a) an IoT device exposing some services (or Resource Server (RS)) needs
to maintain the state information locally and has to synchronize the state
information to the Authorization Server (AS) via other IoT devices in the
network,

• (b) when some messages exchanged are lost then it brings also additional
overhead to the introduced protocol,

• (c) besides, this approach does not focus on establishing a language for work-
flow specification, or to provide accountability features,

• (d) as it is based on process algebra, it is not practitioner friendly2 (see [20]).

Existing research on workflow modeling suggested the use of Petri Nets and its
extensions such as Open Petri Nets or Workflow-Nets for workflow specification.
Some researchers proposed using Petri Nets for workflow authorization purposes
[21, 22], but all existing work and proposed systems considered centralized workflow-
management systems with one central workflow management system monitoring
and controlling the control-flow of the workflow.

Existing methods and mechanisms are not sufficient to guarantee workflow integrity
in a distributed setup where different entities want to protect their goals because
of the above mentioned and the following reasons. Approaches based on process
algebra are difficult to understand2 (see [20]), not practitioner-friendly, and difficult
to integrate with existing security mechanisms or tools.

Also, the previously mentioned approaches do not support accountability in a de-
centralized and trust-less environment. To tackle this, other researchers proposed
to use blockchain-based access control mechanisms. In [23], a blockchain-based ac-
cess control method is presented and in their approach the attribute-based access
control policies and concepts are used in the bitcoin blockchain system. In [24, 25]
a smart contract-based access control solution for IoT is proposed. In [24], each
smart contract may contain only one access control rule i.e., subject-object pair
with associated rights, in addition, to track misbehaviour of resource access, each
resource maintains a list that contains the subject that has accessed the resource

2“Despite its strengths, after almost 30 years the use of process algebra outside the academia is
still very limited. Due to some of its technicalities, process algebra is perceived by practitioners
as being difficult to learn and use …” [20].
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with timestamp info and if the subject already had any penalty or not. Moreover,
the implementation was based on Ethereum Blockchain and Raspberry Pi devices
were used as IoT devices. In contrast, in [25], a single smart contract may contain
many access control rules and this approach uses a management hub as a proxy
component between the IoT devices. The management hub could be a powerful
device to handle complex computational tasks that the IoT devices might not be
able to perform.

Other than the History-based Capability systems for IoT (HCAP) approach [19],
so far, no other approach tackles the core-problem of workflow-aware or history-
based access control in an IoT environment. In addition to that WFAC tackles
i.e., accountability, a way to handle error conditions, or support integration of
practitioner-friendly tools and support the interoperable methods such as OAuth
in a distributed IoT environment. In addition, most of the other approaches do
not focus on privacy issues (e.g., protecting the identity of the client) in situations
where the IoT devices are not able to protect the communication channel between
the client and the resource server.

1.3 Methodology

First, this thesis will explore how IoT devices are deployed and used in different
concrete use cases that are relevant to both consumer and industrial IoT scenarios.
From the use cases, the thesis explores what kind of rules and conditions the owners
want to enforce on consumers and the generic requirements of the consumer. Sec-
ond, this thesis will review the existing work that focuses on the identified research
questions. In particular, the state-of-the-art mechanisms, modeling approaches and
techniques are evaluated to understand their applicability to the identified require-
ments, selected use case scenarios, benefits, and limitations, i.e., whether they can
enforce the goals and requirements identified in these use cases or not. Third,
this thesis analyzes the requirements, identifies the problems, and addresses the
research questions by developing a new approach that fulfils the goals of this thesis
and requirements identified from the use cases. Fourth, to validate the proposed
framework a generic prototype is developed and a simple use case is evaluated.
Next, a generic attacker-model is formulated and the possible attack scenarios are
evaluated against the proposed framework. Next, the idea of the proposed frame-
work and the results are disseminated by publishing in peer-reviewed scientific
conferences. Finally, the thesis concludes by presenting what can and cannot be
achieved by the proposed framework i.e., possibilities and limitations, and what
could be the future directions of this research.

8 Part I



1.4. Research Outcome

1.4 Research Outcome

The outcome of the research work is the design and development of the WFAC
framework and mechanisms for IoT devices and services. WFAC framework pro-
vides a generic, interoperable, distributed access control framework that guarantees
the integrity of workflows, where different owners of distributed IoT resources spec-
ify the workflows. The proposed workflow-aware access control framework allows
only the authorized entities to execute only the actions specified in the workflow
in a specific order, thus enforcing the rules and conditions defined by the owners
of the services. Access to resources is granted by enforcing workflows, thus, the
least privilege and need-to-access mechanism are enforced. An adversary must be
able to prove that he/she is in a particular state of an authorized workflow to gain
access to a service protected by the WFAC approach. WFAC framework uses a
practitioner friendly and easy to understand workflow specification language which
is amicable to formal verification. WFAC framework integrates accountability fea-
tures that enable the workflow participants to prove their actions committed, as
well as, supports the owners in the auditing process, for example, via an audit
trail. WFAC framework provides a workflow modeling tool that can be integrated
with practitioner-friendly tools. The modeling tool allows exporting smart con-
tract templates that can be later used together with blockchain platforms such as
Ethereum.

Main publications related to this thesis are the following:

• Prabhakaran Kasinathan and Jorge Cuellar. Securing the integrity of work-
flows in iot. In Proceedings of the 2018 International Conference on Embedded
Wireless Systems and Networks, EWSN 2018. Madrid, Spain, February 14-16,
2018, pages 252–257, 2018

• Prabhakaran Kasinathan and Jorge Cuellar. Workflow-aware security of in-
tegrated mobility services. In Computer Security - 23rd European Sympo-
sium on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II, pages 3–19, 2018

• Prabhakaran Kasinathan and Jorge Cuellar. Securing emergent iot applica-
tions. In Engineering Trustworthy Software Systems: 4th International School,
SETSS 2018, Chongqing, China, April 7–12, 2018, Tutorial Lectures, pages
99–147, Cham, 2019. Springer International Publishing

• Nejc Zupan, Prabhakaran Kasinathan, Jorge Cuellar, and Markus Sauer. Se-
cure smart contract generation based on petri nets. In Blockchain Technolo-
gies for Industry 4.0, Cham, 2019. In Press: Springer Singapore Publishing

• Jorge Cuellar, Prabhakaran Kasinathan, and Daniel Calvo. Privacy-Enhanced-
Tokens (PAT) profile for ACE. Internet-Draft draft-cuellar-ace-pat-priv-enhanced-
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authz-tokens-06, Internet Engineering Task Force, January 2018. Work in
Progress

The thesis also investigates and develops a method that can be integrated with IoT
protocols such as the ACE OAuth framework. As a result, an Internet Engineering
Task Force (IETF) draft [30] was published (see Sec. 11.1 for more details).

1.4.1 Contributions

Research in workflow modeling, validation, and verification exists for many years
[31, 32]. Petri Nets has applications to model and specify workflows [33, 34, 35]
because it is formally amicable to verification of workflow properties like deadlock
and workflow soundness properties. Also, Petri Nets are easier to understand with-
out any prior knowledge [34]. In addition, the extendable nature of Petri Nets
supported the requirements identified in the thesis. Petri Nets also supports the
integration of distributed architecture with different devices, entities, and services.
Therefore, this thesis investigated and developed further extensions to Petri Nets
that could support distributed workflow execution and enforcement.

The contributions of this thesis can be categorized in three different domains:

Workflow Specification and Execution

• Extended the original Petri Nets concepts and adapting existing extensions
to fulfill the general requirements that are necessary to develop the envisioned
WFAC, they are listed below.

– Oracle places to support communication with external services and en-
tities

– Error places and tokens to handle error conditions

– If-then-else conditional guarded commands and transition contracts with
no recursions, therefore, they are not Turing complete.

– Timeout transitions to handle certain types of error conditions such as
indefinite waiting and to support application logic that requires alter-
native actions after a certain timeout

– Workflow synchronization and exchange of information using Open places
(adopted from Open Petri Nets), this need not synchronize with a cen-
tral workflow server but with other similar workflow execution devices
or services
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• Using the SysML activity diagram to model the business or technical process
of owners. The support and integration of practitioner-friendly tools such as
SysML increase the usability aspects of the proposed WFAC framework

• Introducing the Petri Nets as the execution engine of workflow application
used in the WFAC. The workflow application can be installed in handhelds
such as a smartphone. This workflow application processes the tokens, vali-
date the conditions and rules written in the transition contract, and supports
interoperable protocols such as OAuth.

• Distributed workflow execution between several entities, for example, con-
sumers or users (in OAuth terms clients) use their handheld to execute a
workflow and on the other end, there could be the owner executing the other
part of the workflow on his/her handheld. A seamless workflow synchroniza-
tion and error handling is possible with the help of open places to exchange
workflow information between Petri Nets workflows, and error places for error
handling respectively

• Integration of accountability features with workflow execution ensures that
the entities behave properly. This thesis introduced the logging of decisions
and actions taken by the entities in a private blockchain network without
assuming a central trusted authority. If there is a requirement to penalize
misbehaving entities for their actions in some use cases, then, it is possible
to extend this concept even to penalizing the entities that misbehave.

IoT Devices and Services

• To ensure that a client has completed a workflow task or action, the resource
server provides a signed acknowledgment token called the receipt token with
workflow specific data. This receipt token is then provided to the workflow
execution engine or to other resource servers which processes them to verify
if the appropriate workflow action or task is done correctly or not.

• To enhance privacy, an OAuth profile for IoT devices is developed and pub-
lished as an IETF draft [30].

Smart Contract Generation

• The developed WFAC framework can be used to generate smart contracts for
blockchain applications. The Petri Nets workflows are translated as smart
contract templates using a generic smart contract code generation module.
The thesis has contributed to the development of the Petri Nets based smart
contract generation framework. Once, the smart contract template is gen-
erated, then, with little additional development effort, it can be deployed
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on a blockchain. For instance, the framework now supports the generation
of solidity smart contract code template from the Petri Nets which can be
deployed in Ethereum blockchain.

1.5 Scope of the Thesis

The scope of the thesis is defined based on the requirements identified in the use
cases and the aim of the thesis i.e., research questions and goals defined in the Sec.
1.1.1.

The following points are considered within the scope of this thesis:

• A generic functional prototype and architecture of WFAC

– Architecture design and definition of the framework and its sub-frameworks
were considered. A generic prototype implementation for evaluation and
demonstrating the WFAC. This includes necessary web-applications or
handheld applications that demonstrate the components used in the
framework.

• Case Studies and Evaluation

– Description of concrete use cases that reflect both consumer and indus-
trial use cases and how the proposed method can be used to solve the
identified use cases.

• IoT Interoperability

– Investigation and integration of mechanisms that enable the proposed
WFAC framework to support constrained IoT devices, for instance, a
guide to integrate and use the proposed WFAC framework with generic
IoT platforms and services.

• Accountability Features

– Integration of accountability features with the proposed WFAC frame-
work where the consumers (or workflow participants) and the owners
must be held accountable for their actions. Investigation of how ac-
countability aspects can be integrated with the proposed WFAC frame-
work.

The following points are considered out of the scope of this thesis; the rationale
behind defining them is also provided below.

• Formal verification of workflow specification, validation, and verification as-
pects of a workflow.
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– Petri Nets are well studied and have been used for formal verification.
Existing studies have shown how to achieve this [36, 37]. Therefore,
formally verifying each workflow is use case specific and therefore, was
not the scope of this thesis.

• Usability study of the proposed WFAC framework in terms of how intuitive
and easy it is to use the proposed system

– Usability study needs more stable implementation and interviews with
a wide range of population. This thesis intends to develop a prototype
of the WFAC framework. The usability claim that “Systems Modeling
Language (SysML) is practitioner friendly” is based on already proven
research (see [38, 39, 40]) that has conducted systematic usability stud-
ies. As the proposed framework can integrate SysML with our approach,
we assume that our method is also practitioner friendly. However, this
can be studied in the future.

• Conflict resolution during negotiation phase:

– In distributed IoT scenarios, as described earlier there might be differ-
ent owners who want to enforce their own security goals. These conflicts
can occur during any negotiation phase and the developed framework
is not intended to solve the conflicts itself. However, the WFAC frame-
work presents a workflow specification method using which each entity
can clearly describe only their interests to other participating entities
without completely showing the internal confidential workflow.

• Implementation / validation in constrained IoT devices

– Nowadays IoT devices come in different flavors i.e., the underlying tech-
nology, constrains and communication standards are different. In this
thesis, the evaluation is performed on one selected constrained IoT
device (e.g., which complies with the IETF draft “Terminologies for
constrained-node networks” [41]) and it is not intended to support all
range of available IoT constrained devices in the market.

• Regulatory compliance to Privacy Regulations such as General Data Protec-
tion Regulation (GDPR)

– The use of technologies such as Blockchain in the proposed approach
may raise a conflict with adherence or compliance to regional privacy
regulations such as GDPR e.g., “Right to be forgotten” etc. A recent
study (see [42]) submitted to the EU Parliament discusses these issues
carefully and proposes three different policy recommendations to address
this issue. This topic is currently being researched, discussed, and still
an open issue. This topic is out of scope as it was not the main focus of
this thesis, however, as it is an important topic and could be investigated
as future work.
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Chapter 2

Challenges and Requirements

This chapter presents the challenges and requirements in generic IoT applications.
The challenges and requirements are gathered from concrete use cases identified
and presented in the thesis (see Sec. 15 for detailed use case description) and are
grouped into two categories and described in detailed: (a) security and privacy and
(b) usability and interoperability.

2.1 Security and Privacy

Security and Privacy challenges in IoT and Industrial Internet of Things (IIoT)
are discussed in [43, 44, 45, 6] where the authors discuss technical, financial, and
legal issues involved in IoT and existing solutions. This thesis discusses only the
technical aspects of security and privacy challenges in IoT and IIoT. The Open Web
Application Security Project (OWASP) presented the Top 10 IoT vulnerabilities
and attack surfaces (see [46]), now the topics relevant to this thesis are discussed
below.

2.1.1 Distributed Authorization

The goal of an authentication system is to verify that entities are correctly identified
[11]. After authenticating an entity, the security mechanism of verifying whether the
entity is allowed to perform certain actions is known as authorization. Academic
and industrial researchers are working towards addressing them (see IETF ACE
working group [47]). Since IoT devices are cheap, they do not have interactive
interfaces to implement traditional authentication mechanisms such as a display to
present security info to the user, or a keypad to enter passwords. Sometimes, even
when proper security mechanisms are in place, users do not use them properly. For
example, the default password for many IoT devices is not changed by their users
because of its complexity i.e., the user needs to connect the device to the local
network and login into it via a web interface using default credentials to change
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it. For instance, attackers have used this vulnerability to mount denial-of-service
attacks on popular websites by sending remote commands to billions of IoT devices
- see Mirai botnet attack [8]. On the other hand, most IoT devices implement
single-factor authentication such as the username and password, and authorization
does not consider the context of activities involved like tasks in a workflow.

Distributed authorization mechanisms are important to support a growing number
of IoT devices. Authorization in distributed systems is complex to achieve [48]
as the resources are spread across a network of devices in different domains. The
service provided by multi-tenant systems (e.g., including IoT devices) might know
each other or not. A smart lock installed in a smart home opens or closes the door
based on the Access Control (AC) policies defined by the owner. The owner may
use his smartphone to present his credentials to the smart lock. The smart lock
may use OAuth based mechanism to verify authorization tokens and update its
Access Control (AC) policies periodically. From the perspective of an IoT device
(i.e., smart lock), whenever a request from a Client (i.e., in this case, the owner’s
smartphone) arrives, the IoT device evaluates the authorization token attached
with the request and sends an appropriate response. Following such a standard
approach (for instance, IETF ACE [47]) ensures interoperability. More information
about this topic is presented in Sec. 5.2.

2.1.2 Confidentiality and Privacy

IoT devices can collect sensitive information, including personal data. Therefore,
the data subjects want their information to be confidential. Constrained IoT devices
cannot use standard encryption mechanisms, such as TLS. Light-weight protocols,
such as Datagram Transport Layer Security (DTLS) over Constrained Application
Protocol (CoAP) (See [49]) have been designed to support the confidentiality and
integrity of transported data. For instance, IoT constrained devices (e.g., class 1
or class 2 devices) may not handle DTLS properly, e.g., even if the firmware fit it
might have performance issues such as loss of messages, retransmission of messages,
and thus, affecting the application and battery performance of IoT.

Privacy deals with unlinkability or anonymity of the identity of a person and con-
fidentiality and control over that person’s private information. In the era of social
networking, it is easy to identify, track, locate a person using information collected
from various sources, and this information can be used for malicious purposes.
Nowadays, there are regulations that demand companies protect the private in-
formation of their customers. For instance, to protect the privacy of people, the
European Union recently introduced the GDPR regulation to enforce and regu-
late how companies can collect and process information of the people living in the
EU. Similar regulations exist in different parts of the world. Compromised devices
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holding private data will expose information about the private life of the data sub-
jects. This demands the need for privacy-preserving (enhancing) and confidentiality
mechanisms integrated with the IoT device communication [44].

Depending on the use case, involved actors, and sensitive (e.g., private) information
involved different actions might be needed to be compliant with such regulations.
In such a scenario, the owners of IoT services might want to be compliant with such
regulations in terms of customers’ and service providers’ data. Let us consider the
following example to understand the situation better.

Example:

Assume a car owner (a client) charges his car in several charging stations (re-
sources). The charging stations might be owned by different owners and energy
suppliers. If two or more car charging station owners share the information of
their customers, then it is possible to track the car’s identity and as a result,
private information of the end-user driving the car can be revealed.

Protecting the end-users’ identity in situations like the aforementioned use cases are
important. Therefore, this thesis adopts or develops privacy-enhancing techniques
in the communication protocol used between client devices and resource servers
(i.e., IoT devices).

2.1.3 Attack Escalation Resilience

Compromising one IoT device means that the attacker can escalate the attack on
other IoT devices or systems connected to the same network. Attack escalation is a
serious problem, and therefore, various resilience mechanisms are necessary to solve
this problem. Authorization coupled with the context of task execution workflow
is one way to stop the attack escalation problem.

Example:

Let us assume that one of the IoT devices is physically accessible at the perime-
ter of the manufacturing plant and the IoT device is compromised by an at-
tacker (how it is compromised is out of scope). For instance, the attacker may
plan to escalate the attack by accessing other devices via the network. There-
fore, proper security mechanisms to restrict the attacker from compromising
other devices or equipment via a weak compromised device are necessary.

To prevent such attacks, let us assume that a workflow must be followed (with
respect to WFAC) for initializing software updates or updating the configuration
of devices inside the manufacturing plant. With WFAC in place, the attacker
cannot perform this attack unless he was able to execute that workflow and reach

Part I 17



Chapter 2. Challenges and Requirements

the state which allows him to perform a software update or compromise several
devices that are part of the workflow.

2.1.4 SelfConfiguration and MultiTenancy

It is evident that IoT devices are getting powerful, cheaper, (see [50]) and energy-
efficient day-by-day. Installing and configuring such advanced IoT devices with
existing IoT applications should not require too much human involvement. IoT
devices should have self-configuring features i.e., backward compatibility, resilient
to connection loses and device failures, etc. In such error cases, the IoT system
must re-adapt to the changes and work normally. Multi-tenancy refers to the fact
that devices or services belong to different owners with different or competing goals.
Those parties prefer to cooperate by exchanging information with each other such
that both parties will profit from information or activities exchanged.

2.1.5 FineGrained Access Control and Integrity

Access control mechanisms restrict access to resources, for example, to unlock a
smartphone the owner of the smartphone uses a Personal Identification Number
(PIN) or his/her fingerprint. This is a typical access control scenario where the
owner (the subject) is granted access to the smartphone (the object) if the presented
PIN or the fingerprint is correct. The purpose of an AC mechanism is to stop
unintended subjects from accessing protected objects.

In Role-Based Access Control (RBAC) see [51], access control and authorization
decisions are made based on the Role given to an entity. A role like an admin is
very powerful and by default has (almost all) permissions such as to change, add,
and delete features of a system. For example, it is a bad idea to give access to
all resources in all IoT devices to one single administrator account, because if that
admin credential is stolen or misused, then the attacker is able to access all the
resources associated with the credential. Therefore, it is important to limit the set
of permissions (fine-grained) given to an entity. To achieve this, a least privilege
principle for task authorizations is required within each workflow. The principle
“Need to Know” is a confidentiality policy that states that no subject should be
able to read objects unless reading them is necessary for that subject to perform
its functions [11]. A similar policy, but regarding integrity is required which is
called the “Need to Access” principle which states that no subject should be able
to access the objects to perform either read, write, or update. Therefore, only when
it is necessary to complete the required task in a workflow, access is given to the
required resource. This motivates the need for a more restrictive fine-grained access
control model such as the proposed workflow-aware access control in this thesis.
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Workflow Integrity in Distributed Environments

Integrity aspects are vital for ensuring accountability and as well as to provide
assurance that the data or process is not updated in an unauthorized way. The
first aspect of integrity deals with data communication integrity – the assurance that
the data transferred from one entity to another has not been altered or tampered
with. The second aspect is data integrity – the assurance that data stored in
memory including, firmware, key material, data, or programs stored in memory is
not altered or tampered. The third aspect of integrity is “workflow integrity”. The
assurance that the workflow (as defined) is completed successfully without skipping
or adding any further steps is important and is known as “workflow integrity”. As
part of this thesis, a more detailed definition of workflow and workflow integrity
is presented in Sec. 9.2. The simplest way to enforce workflow integrity is to
have a centralized workflow management server that monitors the execution of the
workflow and gives access to participants (see Sec. 8) accordingly. But this solution
is not suitable for a distributed IoT scenarios because of the following reasons: (a)
scalability issues - one server cannot handle millions of requests at a time (b) failure
with centralized workflow management system means all tasks / or resources are not
accessible; (c) all owners of IoT services must trust that the centralized server will
handle sensitive (e.g., private) information confidentially and protect the integrity
of the data; (d) depending on the use cases, the owners might not want to reveal
information about private workflow to other participants. Thus, when distributed
IoT devices and services are involved as presented in the use cases (see Sec. 15), the
assurance that the workflow is executed properly in a distributed environment is
difficult to achieve. As mentioned earlier, the motivation of this thesis is to develop
a solution to guarantee workflow integrity in such distributed environments.

Validation and Verification of workflows.

The workflow specified by the owners must not have errors such as deadlocks,
because when such errors exist a workflow might end in a state where it cannot
proceed. Formal methods refer to mathematically rigorous techniques and tools
for specification, design, verification of software and hardware systems. Formal
verification is the act of proving or disproving the correctness of a system with
respect to a certain formal specification or property [52]. A verified system may
satisfy safety and liveness properties such as no deadlocks, mutual exclusion is
satisfied, each request will have a response, freedom from starvation, etc. Therefore,
a modeling language is required to verify some properties such as deadlocks and
soundness properties of a workflow.

Part I 19



Chapter 2. Challenges and Requirements

2.1.6 Distributed Accountability

Definition 2.1.1 (Accountability). “The property of a system or system resource
that ensures that the actions of a system entity may be traced uniquely to that entity,
which can then be held responsible for its actions” (see [53]).

Accountability refers to the responsibility of actions committed by an entity. Ac-
countability is often associated with the recording of entities’ actions or computer
events and storing (logging) this information in a secure way. This gives the abil-
ity to audit a computer system or process. Auditing is one of the applications
of accountability. Non-repudiation is a special property that provides proof that
an entity committed an action and this cannot be denied in the future. Asym-
metric cryptography combined with digital signatures is an application example of
non-repudiation.

To achieve accountability in a system, first, the system must record (e.g., log) all
important actions/interactions of entities with the system, including solicitation
and execution. Second, the system must guarantee data integrity requirements of
logs data processed and stored. But in the case of distributed systems where some
systems handling the data may not behave in the expected way (i.e., cannot be
trusted) then, achieving accountability there is more complex.

Accountability protocols go one step further and provide the ability to ensure two
following features: (a) Non-repudiation of actions: neither party can deny their
actions in the interaction; (b) Fairness: both participants receive the expected
outcome of the transaction, or neither do (see [54, 55]). Kuesters et al., in [56]
presented a definition of accountability which allows to precisely capture the level
of accountability a protocol provides.

Logging is a standard feature in many computing systems. Logging information
usually includes data such as system activities, process executions, user interactions,
etc. with relevant information such as timestamps and user identifier. Auditing is
an independent analysis of accounting records i.e., in a computer system, it can be
a program trace, log information, etc. For instance, in case of system/equipment
failure, the production plant auditors must have the capability to find the root
cause of the incident. In case of multiple parties involved, a judge or a protocol is
used to backtrack the events and find what has led to the failure or problem.

Example:

Bitcoin’s (e.g., of blockchain) is a good example where distributed account-
ability is achieved. In Bitcoin platform, different parties exchanging money
(bitcoins) in the form of transactions without trusting a single trusted entity
(e.g., a bank), but trust the underlying cryptography and consensus protocol
which relies upon the fact that more than 50% of the participants validating
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the transactions are behaving good (for more information see [57]).

2.2 Interoperability and Usability

IoT devices are heterogeneous in terms of processing power, memory capacity, and
communication technologies. Some IoT devices may or may not operate with each
other because of non-interoperable standards. Different organizations collaborate
to create interoperable standards such as the Alliance for the Internet of Things
Innovation (AIOTI) (see [58]). Also, the research community such as ACE (see
[47]) is working towards standardizing security protocols to make IoT devices in-
teroperable and secure. In particular, we need interoperable security mechanisms
that can be implemented on the majority of IoT devices.

one of the important factors that influence the adoption of a new computer security
mechanism is usability and interoperability of the mechanism. First, the usability
aspects are discussed below from both end-user’s and owner’s perspective.

• End-user: The user who will be using the introduced security mechanism to
access resources. The introduced mechanism must support the end-user to
continue his day-to-day without introducing additional complexity.

• Owners: The resource owners and system integrators should benefit from
using the proposed mechanism. The owner’s decision is usually influenced by
the cost involved, market advantage, improved process efficiency and security
guarantees, and last but not least customer acceptance.

Second, interoperability with most common technology and protocols that are used
in IoT devices is important. The proposed method should be technology or protocol
agnostic. For instance, the ability to execute a workflow in different client devices
such as smartphones and interact with different IoT devices and services, i.e., even
a small IoT device must be able to understand the access tokens presented by the
clients.

• End-resources: Often, industrial systems have a longer lifetime than commer-
cial systems and the introduced security mechanisms should be interoperable
and support the existing systems.

2.2.1 Exception Handling

It is difficult to model all possible edge cases of a use case in a workflow model.
Therefore, handling exception is an important feature for a workflow execution
system. An IoT application should be capable of recovering from unforeseen error
situations to an extent. One way to recover from unforeseen situations that cannot
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be fixed by the system itself is by allowing human interaction to solve a problem. A
workflow may allow the owner of the services to create on the fly sub-workflows to
recover from error conditions. The owners must take care that the sub-workflows
do not change the main objective of the main-workflow. Also, the owners must
ensure that relevant information is documented for accountability purposes. The
ability to adapt and recover from error situations is an important requirement to
build usable security in an IoT application.

2.2.2 Support for Requirements Elicitation

The requirements engineering process can be divided into four tasks namely the
elicitation, negotiation, specification/documentation, and verification/validation of
requirements [59]. The process of collecting requirements is called requirements
elicitation. The focus of the thesis is not to provide a solution for requirement elic-
itation but only to support it. As this thesis focuses on handling distributed IoT
applications, the requirements come from different owners. Therefore, elicitation
of the requirements and identification of the relevant sources (owners or stakehold-
ers) during the elicitation task is crucial. Modern tools such as Unified Modeling
Language (UML) or SysML allow us to collect requirements from the use cases,
and represent the use case activities via activity diagrams. SysML provides tight
integration of both software and hardware components such that a use case can be
modeled efficiently.
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Chapter 3

Computer Security and Access
Control

To ensure that the reader understands the terminologies used in this thesis, this
chapter presents a brief introduction to some key computer security terminolo-
gies and concepts. Computer security’s three main principles are confidentiality,
integrity, and availability, also popularly known as the CIA triad.

Confidentiality is about hiding or concealing some information or resources (for
more information, see [11]). Access Control mechanisms (e.g., of security mech-
anism) can be used to restrict the access given to confidential information. One
of the applications of cryptography’s encryption and decryption mechanism is pre-
serving the confidentiality of some digital information (i.e., data confidentiality)
available in the form of documents, etc. An encryption key is used to encrypt a
document to make it incomprehensible (or also known as ciphertext), and the cor-
responding key-pair (decryption key) is used to decrypt the ciphertext to retrieve
the original document. Depending on the type of cryptography used, for instance,
in symmetric cryptography the encryption and decryption keys are the same, but
in asymmetric cryptography, the encryption and decryption keys are different i.e.,
the public & private keys.

Integrity mechanisms are used to prevent or detect an improper or unauthorized
change of data or resources (see [11]). There are at least three aspects of integrity.
First, the integrity of data communication i.e., the assurance that the data trans-
ferred from one entity to another has not been altered or tampered with. Second,
the integrity of data stored (i.e., data integrity) i.e., data stored in memory, disks,
or databases, etc. are not altered or tampered e.g., firmware, key material, or pro-
grams. The third aspect of integrity is the “workflow integrity” - a workflow is a
set of tasks that must be carried out in a predefined order (see Sec. 9.2) - i.e., no
unauthorized entity can change the workflow by adding or deleting or modifying
the tasks or the order in which they are processed.
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Principal

Source

Reference
Monitor ObjectDo Operation

Request Guard Resource

Figure 3.1: The Generic Access Control Model [1]

Note: This thesis focuses on the third aspect of integrity i.e., the workflow
integrity.

Availability deals with the ability to use a system, service, information, or resources
when required. Availability of a computing system is particularly very important in
scenarios such as manufacturing or banking applications where the system must be
available at all times. Availability mechanisms help to build reliable and resilient
systems.

The security of a computer system rests on the assumptions which are specific to
the requirements of the system design and the situation where it is used [11]. In
computer security, a system can stay in one of the two states: “secure” or “non-
secure” states. A security mechanism helps a computer system to stay in a secure
state using different methods, for example, a security mechanism may prevent the
system from entering into a “non-secure” state, or it might stop the system. If the
system moves to a “non-secure” state, then it is considered a compromised system.
In practice, this is very difficult to guarantee that a system always stays in the
secure state, because of the complexity of today’s computer systems and many
external factors e.g., human errors. Therefore, a computer system can never be
100% secure. For more information on computer security topics, please refer to the
Matt Bishop’s book “Computer Security: art and science” [11].

Now, an introduction to access control, state-of-the-art access control mechanisms
and security policies is presented. A generic access control model is shown in Fig.
3.1 where the following different elements are involved (see [1]):

• Principals: source of the access request,

• Do (Request) Operation: contains what operations to perform on the objects
e.g., read/write/update etc.,

• Reference Monitor: examines each request for the object, checks the condi-
tions (guard), and decides whether to grant the principal access to the objects
or not,

• Object: The final resource such as files, devices, or processes.

Gollman in [60] states that: “access control consists of two steps, authentication
and authorization”. Authentication is a process that involves correctly identifying
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the entity principal. Usually, the entity presents some identification information
e.g., username and a password (known only to the entity) to the authentication
server. The authentication server checks this information and if it is right, then it
allows the entity to proceed next step i.e., usually, the authorization. Authorization
is a process that evaluates whether an authenticated entity is allowed to access
particular information or perform a certain action (request operation) on a resource
or not.

Security policies can be categorized based on the security goals it deals with. A
confidentiality policy is a security policy that deals only with confidentiality. An
integrity policy is a security policy that deals only with integrity [11].

Definition 3.0.1 (Access Control). “The process of granting access to information
system resources only to authorized users, programs, processes, or other systems”
(see National Institute of Standards and Technology (NIST) [61])

Definition 3.0.2 (Access Control Mechanism). “The logical component that serves
to receive the access request from the subject, to decide, and to enforce the access
decision” (see NIST [62]).

Definition 3.0.3 (Reference Monitor). “An access control concept that refers to
an abstract machine that mediates all accesses to objects by subjects” (see Trusted
Computer System Evaluation Criteria (TCSEC) [63]).

There are three main types of access control:

• (a) static access control - access control rules are static (do not-change) and
predefined i.e., whenever an access control request with the same data is
performed, one gets the same access decision response.

• (B) dynamic access control - access control rules are dynamic based on differ-
ent aspects such as temporal or cardinality constraints - e.g., during weekends
no access, access granted at most twice a day. Therefore, depending on the
dynamic constraints and the request, the access decisions are made.

• (C) history-based access control - access control decisions depend on the ac-
tions committed in the past (history-based). E.g., in the Chinese wall policies
[64], a person cannot access data on two or more Conflict of Interest (COI)
classes are defined i.e., assume A, B, and C are COI, if a subject has accessed
COI-A, then he/she cannot access COI-B or COI-C. One could see history-
based access control also a type of dynamic access control. This thesis, deals
with history-based access control.
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3.1 Static Access Control

There are two main types of static access control, one is the Mandatory Access
Control (MAC) and the other is Discretionary Access Control (DAC) - they are
used alone or in combination in many access control systems.

Definition 3.1.1 (Mandatory Access Control). “an access control policy that is
uniformly enforced across all subjects and objects within the boundary of an infor-
mation system” [65].

In Mandatory Access Control (MAC), a subject that has been granted access to
information is constrained from doing any of the following:

• (i) passing the information to unauthorized subjects or objects;

• (ii) granting its privileges to other subjects;

• (iii) changing one or more security attributes on subjects, objects, the infor-
mation system, or system components;

• (iv) choosing the security attributes to be associated with newly-created or
modified objects; or

• (v) changing the rules governing access control.

Organization-defined subjects may explicitly be granted organization-defined priv-
ileges (i.e., they are trusted subjects) such that they are not limited by some or all
of the above constraints

Definition 3.1.2 (Discretionary Access Control). NIST [65] states that: “an access
control policy that is enforced over all subjects and objects in an information system
where the policy specifies that a subject that has been granted access to information
can do one or more of the following:

• (i) pass the information to other subjects or objects;

• (ii) grant its privileges to other subjects;

• (iii) change security attributes on subjects, objects, information systems, or
system components;

• (iv) choose the security attributes to be associated with newly-created or revised
objects; or

• (v) change the rules governing access control.“
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In MAC, a computer access control mechanism controls access to the objects and
the user has no control. In DAC, the individual user (usually the owner) has control
over the object i.e., the user may decide the access control policies for the object.
The definitions of MAC and DAC are further refined in the DoD Trusted Computer
System Evaluation Criteria (TCSEC) or “Orange Book” [TCSEC] [63]. Sandhu and
Samarati in [51] presented a holistic view of access control principles and how it is
used in practice.

Definition 3.1.3 (Security Model). A security model is a model that represents a
set of policies or a particular policy [11].

The Bell-LaPadula model is a security model that (see [14]) deals with confiden-
tiality policies. It is usually described in short with “No Read Up and No Write
Down” policy. The Biba Model (see [12]) deals with integrity policies. It is usually
described in short with No Write Up and No Read Down policy.

Example:

Consider that some military documents (Objects) are classified into four dif-
ferent classes (security classification) in a linear order e.g., Top-Secret, Secret,
Confidential, and Unclassified - the order represents sensitivity level of those
documents; and, the military officials (subjects) are given some security clear-
ances matching those of the security classifications.

No Read Up: an official (subject) with low clearance cannot read a high classified
document. No Write Down: an official (subject) with high clearance cannot
write a piece of high sensitive information into a low sensitive object. The
Bell-LaPadula model protects information flow from low to high or vice-versa:
by preventing the low classified subjects from reading high sensitive documents
and the high classified subjects writing into low sensitive documents.

No Write Up: an official (subject) with low clearance cannot write into a high
classified document. No Read Down: an official (subject) with high clearance
cannot read a piece of low sensitive information. The Biba model protects
the data integrity: by preventing the low classified subjects from writing into
high sensitive documents and the high classified subjects reading from the low
sensitive documents.

The Clark-Wilson Integrity model (see [13]) presented the importance of the com-
mercial environment’s integrity requirements, and introduced a data integrity pol-
icy that presents two important principles of data integrity principles, the separa-
tion of duties and the well-formed transactions. A well-formed transaction must
satisfy several integrity properties that ensure the integrity of a transaction - this
prevents the subjects to modify the data in an arbitrary fashion by enforcing some
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constrains that the final data must posses. To have a complete overview of the
models presented and other models please see [11].

Some of the important principles used for designing access control mechanisms are
the following:

• separation of duty requires more than one subject to complete a process -
this property is employed to prevent fraud or error, and usually implemented
when high integrity requirements are necessary to protect a process or an
object.

• “The principle of least privilege states that a subject should be given only
those privileges that it needs in order to complete its task” [11].

• The need-to-know and need-to-access are closely associated with the principle
of least privilege. The need-to-know policy focuses on the confidentiality of
information. The need-to-know states that permission to read some informa-
tion is only given if the subject needs that information to perform his tasks
or duties. Whereas, the need-to-access policy deals with the integrity of a
resource or information, where the permission to write, append or change the
information is given to the subject if the subject needs that permission to
complete his task or duties.

3.1.1 Access Control Matrix

The simplest and the abstract form of describing the conditions of a secure state
or (protection state) of a system is the access control matrix model [11]. The set
of entities (e.g., files) that are protected is the set of Objects O. The set of active
entities (e.g., user or process) that tries to perform some actions on protected
objects is the set of Subjects S. The permissions or rights that subject S has on
objects O is given as a matrix A with a set of Rights R with each entry as a[s, o],
where s ∈ S, o ∈ O, and a[s, o] ⊆ R [66, 67, 68]. A subject s has a set of rights
a[s, o] on object o. The set of protection state can now be represented as a triple
(S,O,A).

Example:

The access control matrix presented in Tab. 3.1 shows that there are two
processes (p1 and p2) and files (f1 and f2). Process (p1) has access to read and
write file (f1), but only read access on file (f2).

Note: The interpretation of the meaning of rights changes from one system
to another and it depends on how the system implements it. The right own is
usually associated with the subject that created the resource or object in this
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Table 3.1: An access control matrix example
file (f1) file (f2) process (p1) process (p2)

process (p1) read, write read read, write,
execute, own write

process (p2) append read read read, write,
execute, own

case, and it may have special privileges over the object.

In a traditional access control matrix, the objects are usually files and processes,
but they can be easily extended to functions, messages sent between processes, etc.
Several extensions of the access control matrix also exist in the literature but they
are out-of-scope of this thesis.

3.1.2 Access Control List (ACL)

Access Control Lists (ACLs) are associated with the objects. An ACL of an object
contains a set of pairs, with each pair containing a subject and a set of rights
required to access that object. The access control list of objects can be derived
from each column of an access control matrix.

Example:

If you consider the access control matrix presented in Tab. 3.1, then the corre-
sponding ACL of file (f1) is:

• acl(f1) = { (p1, {read,write}), (p2,{append}) }

An access control list can be either used to give a subject access to an object
(whitelist) or even to deny a subject access to an object (blacklist). As mentioned
earlier, the meaning of the rights depends on the interpretation and how it is
implemented in the system.

3.1.3 Capabilities

Capabilities are associated with the subjects. The capabilities of subjects can be
derived from each row of an access control matrix. In capabilities, each subject
is associated with a set of pairs, with each pair containing an object and a set of
rights that the subject has over the object.
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Example:

If you consider the access control matrix presented in Tab. 3.1, then the corre-
sponding capability list of the subject process (p1) is:

• cap(p1) = { (f1, {read, write}), (f2, {read}), (p1, {read, write, execute,
own}), (p2, {write}) }

Capabilities are very interesting because the rights to access an object are bound
with the subject’s identity. When a subject needs to access an object, it needs only
the capability list with permissions or rights to access that particular object. The
concept of capability is widely used in modern access tokens such as oauth token
- a particular form of short-lived capabilities created by an authorization server to
access a protected resource using OAuth protocol. Capability is used often to give
a subject access to an object, rather than to restriction purposes.

Example:

When the process (p1) needs to access the file (f1), then it requires only to
present the following capability list to the operating system:

• cap(p1) = { (f1, {read, write}) }

In a sense, this capability can be compared to an access token to access the
protected object, i.e., here, the file (f1).

Remark: This thesis uses the concept of capability, when it discusses the workflow-
aware access control mechanism.

3.1.4 Role Based Access Control (RBAC)

In Role-Based Access Control (RBAC), the users (subjects) are assigned to a role,
and each role is associated with a set of rights on the objects. RBAC is widely
used in many modern access control systems because it simplifies the management
of permissions. The RBAC includes various components such as role-permissions,
user-role, and role-role relationships. Two main extensions to the plain RBAC are
the role-hierarchies RBAC1 – where a child role can inherit permissions from the
parent roles – and the constraints RBAC2– where constraints such as mutual ex-
clusion or cardinality constraints can be specified. The consolidated model RBAC3

which includes both RBAC1 and RBAC2 was presented with many open issues.
These different relationships can be used to support previously discussed princi-
ples such as the least privilege and separation of duties. Though RBAC supports
these principles, the enforcement of the properties relies on the implementation.
Furthermore, special care must be taken to manage the RBAC itself . The authors
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introduce an additional RBAC layer for managing administrative permissions called
the ARBAC (see [69]).

3.1.5 Task Based Access Control (TBAC)

In classical subject object based access control, the protection state P ⊆ S×O×A,
where S is the set of subjects, O is the set of objects, and A is the set of actions
or rights. Thomas and Sandhu in [70] presented an access control paradigm where
access control authorization decisions are based on tasks defined in a workflow.
By doing this, they wanted to include the contextual information of the ongoing
tasks or activities when making access control decisions. The Task-Based Access
Control (TBAC)’s protection state extended the subject/object access control rep-
resentation as P ⊆ S ×O×A×U ×AS where, U is the usage and validity counts
specification, and AS is the set of authorization-steps. The U specifies the number
of times the task can be executed. Each authorization-step instance (can be seen as
a data structure) includes several components that include basic contextual infor-
mation about the tasks, which users can invoke/grant the authorization-step, etc.
Furthermore, two extensions (a) composition of two authorization-steps TBAC1

and (b) constraints TBAC2 (similar to the RBAC2), and (c) a consolidated model
TBAC3 which includes both TBAC2 and TBAC3 were proposed with many open
issues left for further discussion.

3.1.6 Attribute Based Access Control (ABAC)

Definition 3.1.4 (Attribute-based Access Control). “An access control method
where subject requests to perform operations on objects are granted or denied based
on assigned attributes of the subject, assigned attributes of the object, environment
conditions, and a set of policies that are specified in terms of those attributes and
conditions” (see [62]).

In Attribute-Based Access Control (ABAC), arbitrary attributes (e.g. of users,
groups, roles, data resources, environmental attributes, etc) are used to create
flexible and complex access control policies, which are then used to make access
control decisions [71, 62]. A popular approach is to use Extensible Access Control
Markup Language (XACML), where attributes are specified as name-value pairs
[72].

There are several variations of access control now being used and deployed in the
industrial setting. One such example is the claim based access identity and access
control [73], where a claim represents “a statement that one subject makes about
oneself or another subject”1. For example, a subject may claim its identity, role,

1http://msdn.microsoft.com/en-us/library/ee534975.aspx
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group membership, etc. In one aspect, you can see claims as security tokens with
arbitrary attributes.

3.1.7 Discussion

The access control matrix is a good method to express a security policy and its
simplicity makes it a good candidate for theoretical analyzes of security problems,
but in practice it is not used because of space requirements required to map all the
objects and subjects [11]. Also, in [74], the authors have discussed in detail different
issues with existing access control mechanisms for interconnected systems connected
to the Internet such as the IoT and how one single access control method might not
be suitable for all use cases. Access Control List (ACL) also faces similar problems
with space requirements. Managing the permissions in the ACL – who can add,
delete, append information to it? or how to assign default permissions to subjects –
is a drawback of ACL. Capabilities are flexible, simple, and can be seen as a security
token given to a subject with fine grained access to a particular object. Currently,
they are used together with many other access control mechanisms. In RBAC, the
management of permissions is made easier by mapping a set of permissions to a
role, and users are assigned to a role. RBAC is very common and it works well in a
centralized setup. When the system grows bigger, then it becomes cumbersome to
manage it. To support distributed systems, another layer of administrative RBAC
is necessary. TBAC extends the traditional subject/object access control by adding
contextual information about ongoing tasks and the number of times a subject may
perform a task, without specifying a way to implement or integrate it with standard
systems. In ABAC, arbitrary attributes are used to have more flexibility and to
express information that was not possible before, for example, only with roles in
RBAC. However, it gets more complex to specify ABAC. To support this XACML
or similar policy description language (policy language) is used in ABAC.

3.2 Dynamic and Historybased Access Control

The Chinese Wall security policy presented in [64], was one of the first papers to
discuss access control based on historical actions committed by a subject. Protected
information is classified into groups and Conflict of Interest (COI) classes. In the
beginning, a subject is allowed to access any information from any group because
there are no conflicts, but once some information is accessed, the next access re-
quests are evaluated for any conflicts. For instance, if there is a conflict of interest
between the data requested and data already accessed, then the request is denied,
otherwise, the request is granted. This type of policy is called the Chinese Wall
security policy.
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offstart on

Push
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Figure 3.2: An example of finite automaton modeling an on/off switch [2]

In modern computer programs and applications we see multiple computations are
handled simultaneously without affecting the final outcome of the individual pro-
gram, this is called concurrency. Every program is designed to accomplish a set
of computations to reach the final state with a set of inputs. Automata theory
is widely used to study such sequences, especially in modeling and proving some
properties in concurrent programs. This section focuses on the application of au-
tomata theory in computer security with a special focus on how particular types of
automata can be used to enforce security policies.

Example:

A simple on/off switch is modeled using a finite automaton and shown in Fig.
3.2. The device has two states: on and off state. When the user presses a
button, depending on the existing state, the state changes from one to another.
For example, if the current state of the device is on, then after the press of a
button, the state changes to off and vice versa.

A safety property sates that “some bad thing does not happen during execution” and
liveness property stipulates that “a good thing happens during execution” (see [75]).
In practice, the examples of safety properties are mutual exclusion and deadlocks;
and the examples of liveness properties are starvation freedom, termination, and
guaranteed service.

3.2.1 Security Automata

Fred Schneider in [15] introduced the “Security Automata”, and discussed the class
of security policies that can be enforced with mechanisms that work by monitoring
system execution. This work concludes that safety property is enforceable and
liveness properties are not enforceable. Also, for a mechanism to be enforceable,
all the information required by the program must be observable by the execution
monitor or commonly known as the reference monitor of the security automata.
This works very well in operating systems, for instance, if any transition state tries
to violate the safety property, then the security automata with the help of the
reference monitor stops the program execution.
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Example:

Consider an e-commerce scenario. If a customer pays for a service, then the
service owner should give service to a customer. Given this scenario, it is
possible to enforce (a) the service owner must provide the service only after
the customer pays which is a safety property, however, (b) it is not possible to
enforce that the owner gives the service for the customer after payment which
is not a safety property but a liveness property.

3.2.2 Service Automata

R.Gay et al., in [17] presented service automata which extended the concepts of
security automata [15] to be applicable in distributed systems with the help of
coordinator that can communicate with other service automata and enforce the local
policy by using the traditional reference monitor. The primary goal of this work
was to enable decentralized enforcement in a coordinated fashion. The coordinator
uses local policy to check if the action is allowed, if it not sufficient, it can delegate
to some other service automaton.

3.2.3 Edit Automata

Ligatti et al., [76] presented edit automata, abstract machines that examine the
sequence of application program action and transform the sequence when it deviates
from a specified policy. The sequence of the program can be transformed into three
different automata:

• truncation automata which can only terminate applications

• suppression automata which can terminate applications and suppress individ-
ual actions, and

• insertion automata which can terminate and insert other automata - i.e, an-
other set of new sequences.

This chapter summarized the evolution of access control systems, and how automata
theory is used to enforce security policies.

3.3 Common Access Control Protocols &
Frameworks

Several protocols such as Kerberos, OAuth 2.0, SAML, etc. were developed to pro-
vide and support authentication and authorization. The discussion usually involves
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several entities or actors. In one end there is a resource (resource server (RS)) and
the owner (resource owner (RO)) of this resource. On the other end, an entity (a
client (C)) wants to access this resource. Authorization of the client is handled by
the authorization server (AS).

The OAuth 2.0 protocol is one of the widely used authorization protocols because
it is flexibility and interoperability with a wide range of applications. This thesis
discusses OAuth because it can be used together with other generic access control
mechanisms such as RBAC and as well as the proposed WFAC framework.

3.3.1 OAuth 2.0 Authorization Framework

The OAuth 2.0 was developed for the web to create and transfer authorization
tokens to an authenticated entity that wants to access a resource from the server.
For instance, a browser is typically the client and a resource in OAuth 2.0 can
be a restricted web-page (that needs special access rights) hosted on a server. In
OAuth 2.0 [48] context, an authorization server provides an OAuth access token
(representing specific permission) to the client to access a resource in the server.

3.3.2 Extensible Access Control Markup Language (XACML)

XACML is an Organization for the Advancement of Structured Information Stan-
dards (OASIS) standard. XACML is primarily used for implementing Attribute-
Based Access Control (ABAC), but it can also be used to implement Role-Based
Access Control (RBAC) as a specification of ABAC. A simple flow of XACML as
specified in the Request for Comments (RFC) (see [77]) and is shown in Fig. 3.3.
A brief explanation is presented below.

• A user sends a request which is intercepted by the Policy Enforcement Point
(PEP)

• The PEP converts the request into an XACML authorization request

• The PEP forwards the authorization request to the Policy Decision Point
(PDP)

• The PDP evaluates the authorization request against the policies it is con-
figured with. The policies are acquired via the Policy Retrieval Point (PRP)
and managed by the Policy Administration Point (PAP). If needed it also
retrieves attribute values from underlying Policy Information Point (PIP).

• The PDP reaches a decision (Permit / Deny / Not-Applicable / Indetermi-
nate) and returns it to the PEP
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Figure 3.3: An example XACML Authorization Flow
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Modeling Workflows

This chapter presents different modeling techniques and systematically analyzes
them. The advantages and disadvantages of each method are discussed in Sec. 4.4.
Finally, based on the requirements presented in Chap. 2 a modeling methodology is
selected. In particular, Sec. 4.4.1 presents the advantages of the proposed method.

The two widely used concurrency theory approaches for modeling processes are the
net theory and the calculi theory. Their applications include modeling communica-
tion between parallel processes, detect deadlocks, choice of actions, etc. They are
primarily used for specification and verification of properties and conditions in a
process.

4.1 Petri Nets

In the net theory, one of the ways to represent a process is using labelled Petri Net.
Petri Nets have evolved over the decades since their inception in the year 1966.
In traditional Petri Nets (PN) (see [78]), there are places, tokens, and transitions.
Petri Nets have the advantage that many properties such as liveness (deadlock-
freeness), reachability are easy to verify (see [79, 80, 81]).

A place in a traditional Petri Net can hold one or more tokens (markings) of the
same type. A transition may have one or more input and output places. A transition
fires if its input places have sufficient tokens and as a result, it produces tokens in
output places. The classical definition of a Petri Net (P/T net) [34, 33] is:

Definition 4.1.1 (Petri Net Tokens). If a token contains some arbitrary data, then
it is referred to as colored tokens else as a black token. In general, a token in a Petri
Net may or may not contain data. A token moves from one place to another via a
transition. A transition consumes the tokens from the input place and produces the
same or new tokens in the output places. The tokens show the current state of the
Petri Net via Markings.
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a place

a transition an activated transition
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PN − step(b)
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Figure 4.1: PN-Step(a) shows the initial state of a Petri Net and PN-Step(b) shows
the state of the Petri Net after transitions t1 and t2 have fired.

A Petri Net is a triple (P, T, F ), where

• P is a finite set of places,

• T is a finite set of transitions (P ∩ T = ⊘)

• F ⊆ (P × T ) ∪ (T × P ) is a finite set of arcs (the flow relation)

A transition t has input and output places. A place p is input or output for
transition t based on the directed arc from p to t or from t to p. A place can
contain zero or more tokens. A token is represented by a black dot •. The global
state of a Petri Net, also called a marking, is the distribution of tokens over places.
Formally, a state or marking M is a function M : P → N that assigns to every
place p the number of tokens M (p) that reside in p. We use the notation •t to
denote the set of input places for a transition t; similarly, t•, •p and p•. Figure
4.1 shows a simple Petri Net in two steps: first, in step(a) transitions t1 and t2 are
activated because •t1 and •t2 have sufficient tokens; second, in step(b) t1 and t2
fire to produce tokens in output places of t1• and t2•.

Several extensions of Petri Nets such as Time Petri Nets and Colored Petri Nets
have enabled us to model different constraints such as time and types of tokens,
and so on. Thus, Petri Nets were widely used in various application areas to verify
network protocols, resource optimization, etc. For a deeper understanding of Petri
Nets, we recommend the book of Reisig [34] to the readers. We briefly present the
most important extensions of Petri Net relevant for our work below.
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4.1.1 Timed Petri Nets (TPN)

Timed Petri Nets (TPN) is used to model and simulate real systems as it is often
important to describe the temporal behavior of the system, i.e., we need a way to
model duration and delays (time) of transition firing (see [82]). The classical Petri
Net is not capable of handling this.

4.1.2 Colored Petri Nets (CPN)

Colored Petri Nets (CPN) is an extension of Petri Nets where different types of
tokens can exist in the same place (see [83, 84]). In a colored Petri Net, each token
is represented by specific colors (types). CPNs have the same kind of concurrency
properties as Place/Transition Nets. Different tools such as CPN-Tools [85] are
available to model and validate concurrent systems.

4.1.3 Highlevel Petri Nets

High-level Petri Nets simplify the process of creating complex workflows by break-
ing them into smaller partial workflows. At a high-level, it provides an overall
description of the process without considering all details. As we navigate to a lower
level, it provides an in-depth description of that particular component. The ex-
tension of Petri Net with color, time and hierarchy allows us to model complex
industrial systems with several layers of hierarchy without losing the details (see
[86, 87]).

4.1.4 Workflow Nets (WFnet)

Workflow Nets (WF-net) are used to model a typical business process workflow
using Petri Nets. Research advancements in the area of workflow nets contributed
to our research. Most of the research discusses mapping workflow concepts such as
task execution, synchronization (split and join) actions, etc. into Petri Nets (see
[33, 31]). Workflow Nets showed that Petri Nets could be used to design and model
complex workflows. In addition, Petri Net tools can be used to verify traditional
Petri Net properties such as liveness, etc in Workflow Nets.

4.1.5 Open Petri Nets

Open Petri Nets provide interfaces that enable two or more workflows to exchange
information in the form of tokens. Open Petri Nets provide entry and exit points via
Open Petri Net places to exchange information between workflows (see [88]). One
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of the goals of this work is to support multi-tenancy, i.e., to support activities, tasks
from different organizations. The Composition is a common approach in software
engineering i.e., to assemble small systems into larger ones. Reisig in [34] describes
the composition of nets using interfaces that can be used for asynchronous and
directed communication between Petri Nets.

Petri Nets and its applications are well studied in the literature. Petri Nets enable us
to create verified workflows with properties like guaranteed termination, separation-
of-duties, reachability, liveness (deadlock-free), and coverability [79, 31, 81].

4.2 Automata and Process Algebra

Definition 4.2.1 (Automaton). “An automaton consists of a set of states, actions,
transitions between states, and an initial state. Labels denote the transition from
one state to another” see [32].

Many specification models have adopted automata to express and validate the
system behavior because they can represent safety properties for verification in
finite state spaces using Linear Temporal Logic (LTL) (see [89, 90]). In particular,
Process algebras are a diverse family of related approaches to formally modeling
concurrent systems and their semantic foundation is based on automata (see [32]).

Mathematical models such as calculus are used for describing the statements about
(e.g., atomic actions of) processes that are formulated in algebraical language. Also,
these precise mathematical models are also used for specifying and validating (e.g.,
verification of certain properties) the processes. For instance, in trace theory, a
process can fully be determined by a sequence of atomic actions (traces) that it
can perform (see [91]). Communicating Sequential Processes (CSP) introduced by
Hoare in [92] discusses concepts of synchronous communication channels between
different processes, parallel composition, and hiding some internal communication.
In CSP, the processes are represented as failure sets. A set of all failure states
paired with refused states of the process is called the failure sets of the process. For
example, if a process enters an unwanted state (e.g., a deadlock which is considered
to be observable) in an experiment after a sequence of trace, then this an example
of a failure state. Calculus of Communicating System (CCS) introduced by R.
Milner in [93] represents a process by a synchronization tree which is also known
as the state transition diagram or process graph.

Definition 4.2.2 (Process Algebra). “The systematic exploration of (families of)
algebraical calculi is called process algebra” [91].

Several approaches use Petri Nets or Process Algebra for their inherent benefits. In
[94], the author studied both approaches for reasoning complex systems, and finally
uses the Petri Net theory approach for modeling workflows.
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4.3 Business Process Modeling

A survey of formal verification approaches for business process modeling and their
shortcomings is presented in [32]. The basic approach for analyzing the business
process models is to translate them into other approaches such as the Process Alge-
bra or Petri Nets. When translating a process specified in Business Process Model
and Notation (BPMN) to Petri Nets, the chances of misinterpretations are high
because of semantics used in BPMN. In addition, there is an additional overhead
whenever the process is updated i.e., the updated BPMN process must be trans-
lated again and checked via Petri Nets. This shows that the semantics of Petri Nets
are simple and enough for specifying processes and validating them.

The Object Management Group (OMG) developed the BPMN [95] standard for
business processes diagrams which is intended to be directly used by the stake-
holders who involve in designing, managing and realizing the business processes
in organizations. The main motivation is to have a unified notation language for
representing business processes. The OASIS developed the Web Services Business
Process Execution Language (WS-BPEL) which uses Extensible Markup Language
(XML) to describes business process activities as Web services and defines how
they can be used to execute those tasks. Similarly, the Open Group consortium
developed ArchiMate 1, a standard that describes a graphical language for model-
ing enterprise architectures in three layers: business layer, application layer, and
technology layer. The business layer of ArchiMate includes business processes mod-
eling. Surveys of different visual modeling techniques and business process modeling
methods are presented in the papers [96, 97]. For example, BPMN can be used to
model business processes involving IoT devices and services (see [98]). However, as
pointed out earlier existing modeling methods have complex semantics i.e., possi-
bility to represent a business process in different ways, and this introduces further
problems such as misinterpretations. Therefore, they are not optimal for represent-
ing access control in a distributed IoT environment. Thus, modeling techniques
presented above are not optimal for addressing the requirements and goals focused
in this thesis. Therefore, they were not adopted as a modeling and specification
language.

4.4 Advantages and Disadvantages of different
Modeling Techniques

The Tab. 4.1 shows the advantages and disadvantages of different modeling tech-
niques discussed above. In addition, Sec. 4.4.1 presents the advantages of Petri
Nets compared to other approaches.

1https://pubs.opengroup.org/architecture/archimate3-doc/
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Table 4.1: Advantages and Disadvantages of Modeling Techniques
Modeling-
Approaches

Advantages Disadvantages

Process Algebra
and Automata

- Strong formal specification and verification
techniques

- Requires mathematical knowledge to model
and understand

- Strong research background and commu-
nity

- Popular in academia only

- Ability to model and verify concurrent pro-
cesses

- Not user or practitioner friendly

- There exists real world implementations,
for instance, in operating systems
- Complexity can be handled via Composi-
tional approaches

Business Process - Graphical view and interface - easy to un-
derstand and model processes

- Does not have strong verification techniques
by default

- Used in many commercial business process
modeling tools

- Ambiguity in describing the same process
in multiple different ways and notations

- Complexity can be handled via Composi-
tional approaches

- Does not offer capabilities to simulate, val-
idate whether a process ends, and so on

- Popular in industry - Only a graphical notation to describe pro-
cesses and cannot be used to execute the pro-
cess itself

Petri Nets - Graphical view and interface - easy to un-
derstand and model processes

- Detailed modeling of business use cases can
get complex

- Ability to simulate the process via token-
game semantics

Continued on next page
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Continued from previous page
Modeling-
Approaches

Advantages Disadvantages

- Strength in modeling inter-process commu-
nication and synchronization of concurrent
processes
- Strong formal verification abilities i.e., abil-
ity to verify whether a process ends, validate
whether the process has any dead place with
markings, etc.
- Popular both in academia and industry -
used for network protocol verification
- Availability of actively developed open
source tools to model and validate Petri Net
models
- The semantics of the Petri Nets can be im-
plemented directly with the help of security
tokens like OAuth-tokens
- Complexity can be handled via Composi-
tional and Hierarchical Petri Nets
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4.4.1 Advantages of Petri Nets over other approaches

This thesis adopts the Petri Nets modeling approach because of its simplicity, us-
ability, synchronization (compositional) ability, flexibility, expressivity, and the
possibility to perform formal verification analysis.

This thesis also presents important extensions of Petri Net that help us to specify
and verify workflows. By enforcing verified workflows combined with fine-grained
access control, this enables us to provide assurance in workflow-aware access control.
The advantages of using Petri Nets for specifying and modeling workflows are the
following:

• Petri Nets use the graphical interface to model concurrent process and there-
fore, they are easy to understand even by a business person without a strong
mathematical knowledge

• Petri Nets are intuitive and the process can be simulated and verified with
the help of token-game semantics.

• Petri Nets are amicable to formal verification.

• Petri Nets have a strong notion of inter-process communication and synchro-
nization features, i.e., inter-process communication and composition of work-
flows can be modeled. This is usually an important requirement for modeling
complex processes.

On the other hand, Process algebras require good mathematical knowledge to spec-
ify a process, and to understand the models, different states of the workflow, and
to verify them.

Widely used approaches for modeling concurrent processes were presented in this
chapter. The advantages of using Petri Nets over other approaches were presented.
As Petri Nets have more advantages over other approaches this thesis uses Petri
Nets as for modeling, specifying, and validating the processes or workflows.
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Internet of Things (IoT)

Definition 5.0.1 (Internet of Things). Internet-of-Things (IoT) is defined as “[..]
a dynamic global network infrastructure with self-configuring capabilities based on
standard and interoperable communication protocols where physical and virtual
things have identities, physical attributes, virtual personalities, use intelligent in-
terfaces, and are seamlessly integrated into the information network” [99].

IoT devices usually have multiple sensors and actuators attached to them to collect
information from, and interact with, the environment where they are deployed. IoT
devices are categorized by their ability to process and store data, energy consump-
tion, and communication capabilities (see [41]). In particular, the most common
constrained IoT are classified into three groups: Class 0 devices are really con-
strained sensor-like motes with less than 10 Kilo Bytes (KB) of Random Access
Memory (RAM) and 100 KB of flash memory. Class 1 devices are quite constrained,
and cannot use standard Internet Protocol stack; however, class 1 devices support
protocols designed for constrained devices. Class 2 devices are less constrained, can
support some security functionalities specifically designed for constrained devices.
Finally, the devices with capabilities beyond class 2 support most of the traditional
Internet and security protocols like Hypertext Transfer Protocol (HTTP) and TLS;
however, they can still be constrained by limited energy supply. Generally, IoT
devices use both long and short-range communication technologies such as Zigbee,
Bluetooth, LTE, etc. combined with constrained communication protocols such as
CoAP for Internet connectivity.

Constrained IoT devices have several advantages, they are cheap, compact, easy
to deploy, and consume less energy. The advancements in the semiconductor field
enabled the development of increased processing, storage capabilities and at the
same time energy efficient hardware. In addition, mass manufacturing may de-
crease the overall cost of the device itself. Most of the IoT applications use data
collected from the IoT devices to get insights, predict, and optimize their services
with the help of Artificial Intelligence (AI) technologies. This approach is used in
various applications such as smart manufacturing, industrial control systems, fi-
nancial services, retail, intelligent logistics, transportation, medical and healthcare
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applications, smart grid, intelligent traffic, environmental monitoring, smart home,
assisted living, agriculture, and many more.

In general, for an IoT device to communicate with other devices whether or not it
belongs to a different owner - its operating system and hardware capabilities should
be able to run interoperable communication and security protocols as described in
Sec. 2.2. This is an important and a basic requirement for any IoT devices to be
integrated with other systems such as a workflow platform or a middleware through
which other systems can communicate, access, and control the IoT devices.

5.1 Issues in Constrained IoT Devices

As Constrained IoT devices used in various applications they are more exposed and
therefore, vulnerable to attacks because existing state-of-the-art security mecha-
nisms do not fit within the constrained devices. Often, these devices have poor
physical and software security and can be easily compromised by a motivated at-
tacker. For example, modern security mechanisms are difficult to achieve in con-
strained IoT devices because of the lack of memory space and processing power
(see [100, 43]). Implementing secure key generation and key storage in constrained
IoT devices are hard (see guidelines from Trusted Computing Group [101]) because
these devices lack sufficient entropy to generate random numbers and are prone to
side-channel attacks. Several attacks on industrial IoT devices are also presented in
[43]. A report from European Union Agency for Network and Information Security
(ENISA) also presents similar issues in IoT but with a special focus on critical infor-
mation infrastructures (see [6]). Due to their inherent weakness and vulnerabilities,
hackers frequently target IoT devices to escalate attacks on valuable assets. Now,
since IoT devices are used in critical infrastructures, it is evident that we need
better security mechanisms and tools to protect them. Researchers in academia
and industry are working together to secure emergent IoT devices, protocols, and
applications. Furthermore, IoT devices collect personal information or data that
can be used to infer private activities or habits without proper consent. As a con-
sequence, the European Union’s privacy regulation GDPR (see [102]) has enforced
strict regulations for handling private information of users.

In IoT applications, multi-tenant architecture is more prominent and in such appli-
cations, different entities provide and consume services from one another and each
entity might want to enforce their own integrity, confidentiality or functionality
goals on other entities consuming his service.

One of the main problems with multi-tenant, distributed systems and architecture
is the “trust problem”: each participating entity 1 in such a distributed system

1An “entity” may refer to the owner of the resource, or a client using that resource in this context.
For instance, a resource owner might want the client to authenticate, then do some action,
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Figure 5.1: ACE OAuth 2.0 Flow [3]

requires that the others behave in a particular way in order to achieve their goals.
Ideally, an entity would like to specify a “contract” that declares her assumptions
about the behavior of other entities as well as the guarantees that she offers to
them about her actions. But how can she trust other parties to behave according
to the contract? How can she be sure that they do not “cheat” her? This thesis also
investigates a way to automatically enforce such a contract. Each party imposes his
rules on entities while they interact with his services. In general, those sequences
of interactions defined are a set of allowed actions, or in other words, a workflow.
To enforce such tasks to be executed in a particular order we need a workflow
specification and enforcement method. It is important to notice that securing the
assumption-commitment semantics (see [103, 104]) in a workflow is also the key for
its validation and verification.

5.2 Authorization for Constrained IoT Devices

Authorization mechanisms are important to restrict or allow an entity to access
a resource in an IoT device. The IETF working group (WG) Authentication and
Authorization for constrained devices (ACE) [47] is specifying a framework for
authentication and authorization in IoT environments called “ACE-OAuth” [3].
ACE-OAuth is based on OAuth 2.0 and Constrained Application Protocol (CoAP)
and its message flow is shown in Fig. 5.1. To describe the ACE-OAuth actors, let
us consider the following example.

Example:

John owns a smartwatch (a typical IoT consumer device), and with that he
wants to track, store his steps, heartbeat, etc. John wants complete control over
his data i.e., deleting information stored on the device or in the cloud. John

and then log her actions before accessing the resource. On the other hand, the client might
want the guarantee that after authenticating, and doing some action she must be guaranteed
that the resource will be granted.
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uses his smartphone to access or modify information stored on his smartwatch.
For special access i.e., deleting information or changing the owner information
on his smartwatch, John needs an access token from the cloud service provided
by the smartwatch manufacturer. Thus, we can map the use case actors with
the ACE-OAuth actors: the smartphone is a Client (CL), the smartwatch is
Resource Server (RS), the cloud service is the Authorization Server (AS), and
John is the Resource Owner (RO).

In Fig. 5.1, the messages exchanged are the following:

• (A) Requesting an Access Token: The CL performs an access token request
to the token endpoint at the AS. The client may include authentication cre-
dentials (e.g., client credentials) according to the OAuth 2.0 specifications,
and information about what resources it wants to access from RS.

• (B) Access Token Response: If the request from CL was successful, then
AS returns an access token to the CL with optional additional information
such as Proof-of-Possession (PoP) access token extension. The AT issued can
also be just a bearer assertion. The Framework also defines parameters that
inform the client about RS capabilities and the profiles supported by the RS.

• (C) Resource Request: The CL performs a resource request to RS. Depending
on the resource server limitations and the chosen profile and communication
protocol, the resource request exchange may differ. Usually, this request
contains the access token and other information obtained from the AS in
step B.

• Messages (D) and (E) are optional in ACE-OAuth. The RS must be online or
should have direct communication to its AS to make introspection request.
Introspection request is usually not necessary when the access tokens are
self-contained RS can validate on its own.

• (F) Protected Resource: When CL’s request is authorized, then RS uses the
dynamically established keys to protect the response according to the com-
munication protocol and the security configurations specified in the profile.
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Distributed Ledger Technology

A chain of blocks that guarantees the integrity and immutability of data inside
every block is known as the blockchain. Each block is linked to each other using
a cryptographic hash of the previous block, a timestamp, and transaction data.
The first cryptocurrency blockchain introduced was Bitcoin [105], but the ideas of
a blockchain originated from the work of Haber and Stornetta in 1991 [106], where
the authors presented a mechanism to time-stamp documents (any digital file such
as a small word document or a big video file) by linking them together with the
help of one-way hash function.

6.1 Blockchain

Blockchains are currently used in different applications, in particular, they are
mainly used to create distributed ledgers that ensure the immutability of data,
data redundancy, provenance and transparency of records to the participants and
users of the blockchain. The records often referred to as transactions are stored
in an append-only log called a ledger. The ledger is replicated across a peer-to-
peer blockchain network where each node participating in the network maintains
a consistent copy of it, thus forming a distributed database of all transactions. A
consensus protocol such as “Proof-of-Work” is used to decide how new transactions
are added to the blockchain and how to validate existing transactions.

The peer-to-peer network is made of different entities (node, full-node, etc) for
instance, a full-node keeps a copy of all transactions of the blockchain. For the
interconnection of nodes, an overlay network is used, where every network node is
connected to an alterable set of neighbors in a peer-to-peer fashion. For the data
distribution between neighboring peers, a flooding algorithm called gossip protocol
is commonly used (see [57]). In general, based on the consensus protocol and the
participants, a blockchain system can be categorized into two types: a public or
a private blockchain. In a public blockchain network, anyone is free to join the
blockchain network as a peer, and start contributing to the network by verifying
transactions and maintaining a local copy of the ledger. In a private blockchain,

51



Chapter 6. Distributed Ledger Technology

participants are restricted i.e., only a specific set of nodes is allowed to join the
network which is governed by a predefined set of rules. Developers and software
architects decide which type of blockchain system (either private or public) and
consensus algorithm to use based on the requirements of the use cases.

Satoshi Nakamoto in [105] introduced a cryptocurrency known as “Bitcoin” that
uses blockchain to create an immutable distributed ledger for storing integrity pro-
tected cryptocurrency and its transactions. Bitcoin introduced a consensus mecha-
nism to solve the double-spending problem without having a trusted authority (i.e.,
a typical Banking authority) to check every transaction. Bitcoin is a classic exam-
ple of public permissionless blockchain, it revolutionized the financial industry and
it is termed as “Blockchain 1.0” in [107]. A very good introduction to blockchain,
Bitcoin, and other cryptocurrencies based on blockchain technology is presented in
[57].

6.2 Smart Contracts

Smart contracts (SC), introduced by Nick Szabo in [108], become popular with the
advancements in blockchain technology, termed as “Blockchain 2.0” in [107]. Smart
contracts are often written to ensure fairness between two or more participating
entities without a trusted third-party. We explain the differences between a smart
contract and a typical judicial system’s written contract. In the judicial scenario,
two or more parties agree to a written contract, and bind to those contractual
conditions. In case of a dispute, the judicial system (the trusted authority by the
involved parties) solves the dispute with fairness. Similarly, in the smart contract
setup, the owner creates the smart contract and publishes it in the blockchain. The
entities that agree with the SC conditions interact with it. The following condi-
tions hold for any generic smart contract on a blockchain. First, depending on the
underlying blockchain systems, updating a smart contract after it is published on
the blockchain is not possible or trivial even by the smart contract owner. For in-
stance, in most public Blockchain systems, once a smart contract is published then
it cannot be updated (i.e., business logic cannot be changed) even by the owner
of the smart contract. Many permissioned blockchain systems, for instance, Hy-
perledger Fabric (HLF) allows upgrading smart contracts by satisfying predefined
smart contract upgrading policies e.g., other members or majority of the involved
participants should approve for upgrading the smart contract. Second, the SC con-
ditions are enforced by the code written and the underlying blockchain system’s
consensus mechanism and policies. Therefore, this ensures fairness to the involved
parties without involving a trusted third-party (see [109]).

Smart contracts (SC) are arbitrary computer code (similar to a programming lan-
guage’s code) expressing one or more business logic. Unlike a typical computer
code, smart contract code is deployed in a blockchain network, it is executed and
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the results are verified by the nodes participating in the blockchain network. In
Bitcoin, a simple stack language is used to express the rules and conditions for a
successful transaction, validating double spending, how new coins are produced and
consumed. Therefore, it is vital that the smart contracts deployed are correct and
behave in a deterministic way. There are several incidents where bugs in a smart
contract code were exploited by adversaries for their benefit: one famous incident
is the hack on the Decentralized Autonomous Organization (DAO)’s SC deployed
in Ethereum blockchain network (see [110]).

Different implementations of blockchain exist such as Ethereum, Hyperledger Fab-
ric, Hyperledger Sawtooth and others. They all provide a blockchain based dis-
tributed transaction-processing platform that allows the implementation of business
logics as smart contracts. But they use different features such as smart contract
specification language, blockchain type, and consensus mechanisms. Ethereum and
similar blockchain implementations refer to the code written to enforce the business
logic as smart contract [111] whereas, the Hyperledger Fabric refers to the code as
Chaincode. Ethereum uses a specially designed smart contract programming lan-
guage called Solidity [109] whereas for example, Hyperledger Fabric uses standard
programming languages such as Go, Node.js, and Java to write chaincode.

In [112], the authors presented the problems of using Turing Complete languages
for writing smart contracts and some methods to make SCs less vulnerable. Solidity
and chaincode are Turing complete because they use Turing complete languages to
write smart contracts. Researchers and organizations are working towards address-
ing these problems in smart contracts for example, in [113, 114], the authors explain
methods to create safe smart contracts. Security start-ups and established compa-
nies are offering services to audit smart contracts and ensure that no vulnerabilities
exist before deploying SCs on the blockchain network.
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StateoftheArt Analysis

This chapter presents different methods and technologies that can be used to par-
tially address the problems identified in the distributed IoT scenario and some of
its challenges and requirements were presented in Chap. 1 and Chap. 2.

The brief description of the distributed IoT scenario is the following: IoT is used
in many applications areas where these devices are distributed and more often,
owned by different owners. Therefore, the owners of the IoT devices have their
own rules also, the entities (who want to access the services provided by the IoT
devices) must obey and follow the rules enforced by corresponding owners. In such
scenarios, the owners may not trust each other therefore, we need an approach that
works in such distributed scenarios. This thesis presents an abstract version of the
mobility and car sharing use case presented in Sec. 15.2 and 15.3 respectively to
perform state-of-the-art analysis. In the following sections, this use case is referred
to as the mobility use case where multiple mobility providers share their mobility
service to provide a comprehensive mobility solution to end users. Each mobility
provider wants to enforce his own rules, e.g., if a user rents a car from company-A,
then the user should follow a particular workflow to reserve, rent, use the car, and
finally, to return and park the car in a predefined geo-fenced area. Similarly, for
other mobility providers such as trains and flights, the rules could be different.
And, in case of a dispute, or error, the method should be able to solve the issue
using distributed accountability without relying on a single trusted entity.

To our best knowledge, no solutions exist as of now which takes into consideration
all the challenges and requirements focused on this thesis (see Sec. 2) and is able
to solve the described distributed IoT scenario. This section presents an analysis
of different mechanisms, technologies, and tools that could be used to partially
address some of the challenges independently.
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7.1 Legal and Contractual Frameworks

In case a conflict arises between two or more parties in the presented mobility use
case, e.g., the user fails to follow part of the car rental process a legal contractual
framework is used to resolve it. Usually this is a time consuming and complex
process, involving a trusted third-party like an insurance agency that performs an
investigation to identify the root cause and resolution.

A legal contract describes the rules that must be followed by the participating
entities and the penalties to be applied in specific cases. In this approach, all
involved entities are assumed to trust the legal process and the judicial/insurance
system - which is open, not biased, and decides solely based on contract and the
applicable legislation. It is possible to specify a business use case and conditions in
the form of text. Such text is usually based on natural language and is subjected to
interpretation. More often, a text description is not as precise as digitally specified
contracts - where the chance of misinterpretation is low.

A natural language contract requires a manual auditing process involving technical
and legal experts that consumes a lot of time to resolve disputes. In addition,
this process is very expensive as it is now. As described, the legal and contractual
frameworks are alone not sufficient to solve all the requirements and challenges faced
in the distributed IoT scenarios. However, it is usually used as a compliment to
technical solutions even now. The technical details on how each owner implement
their IoT devices and enforce the agreed conditions are usually not described in
such legal contracts. In general, IoT devices (e.g., in the mobility use case, the
car) should have inter-operable protocols such that they could interact with other
devices that are owned by different participating entities, e.g., the smartphone of
the user renting the car. This thesis presents the WFAC framework to enforce the
contractual conditions digitally and semi-automatically.

7.2 Workflow Management Systems

Existing workflow management systems were built for managing and automating
workflows that include repetitive tasks using a centralized approach. Also, those
workflow systems focus on enforcing centrally governed policies within an organi-
zation via workflows or business processes - usually, using systems controlled by
the same organization. This is different from the scenario this thesis is focusing on
where different owners may have different goals and they work collaboratively.

In the mobility use case, as multiple mobility providers are involved - such as a
train service provider e.g., Deutsche Bahn; a long term car rental provider e.g.,
Sixt; and a short term car sharing providers e.g., Sharenow - they want to enforce
different restrictions (i.e., workflows) on the users using their services and do not
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want to share their customer data to one centralized service. However, they want
to make use of a platform with which integrated mobility service can be provided.

Existing centralized workflow management systems are not suitable for this. Com-
mercial workflow management systems do not focus on constrained IoT environment
or the scenarios with accountability, error-recovery, and validation of workflows that
this thesis focuses on. For instance, SAP’s Business Workflow Systems 1 primarily
focus on Enterprise Resource Planning (ERP) and Customer Relationship Manage-
ment (CRM) systems, and how they can be integrated with internal systems such
as Human Resource (HR) systems to increase efficiency and productivity. How-
ever, with the latest advancements in workflow systems, with additional add-on
techniques such as SAP’s WebFlow Function 2, one organization can send XML
documents with workflow specific info to other organizations where the workflow
could be continued and extended.

Also, existing workflow management applications are resource intensive and need
powerful servers to design, govern, execute, and manage the workflows. In addition,
the main focus of these workflows is to ease repetitive tasks and not to guarantee
workflow integrity or not to enforce access control integrated. In addition, internal
HR management systems provide the role functionality, with that RBAC is used
together with a workflow. Therefore, a State-of-the-Art analysis of commercial
workflow systems was not performed within the scope of this thesis.

7.3 Access Control Mechanisms

Access control mechanisms such as Attribute-Based Access Control (ABAC) can
be used to restrict access to a resource based on historical events. In order to do
this, the ABAC’s PIP should have access to historical events in real time, based
on which the PDP and PEP may either grant or deny access to the resource.
Recent researches including, [115, 116] explored how to propagate concurrent state
information across distributed databases for PDPs to make access control decision.
Decat et al., in [115] introduced a protocol to exchange concurrent information using
distributed coordinators. In this protocol, each subject and resource in question
identifies a unique coordinator from the list of coordinators. Each coordinator
contains a set of workers nodes that update and query an attribute database e.g.,
MongoDB or Cassandra that is designed as eventually consistent and scalable. Race
conditions are avoided by ensuring that the same coordinator is used for policy
evaluation before or even after a conflict resolution procedure. In [116], the authors
introduce FACADE (Fast Access Control Algorithm with Distributed Evaluation)

1https://help.sap.com/viewer/a602ff71a47c441bb3000504ec938fea/7.5.6/en-US/
4f41e8a0dd89535fe10000000a421937.html

2https://help.sap.com/viewer/a602ff71a47c441bb3000504ec938fea/7.5.6/en-US/
4f371476f5d95541e10000000a421937.html
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which uses a similar architecture of [115], but their algorithm provides low latency
and higher throughput compared to [115] approach.

This is challenging in the thesis scenario, where IoT devices might be constrained,
connectivity to a common database might not provide the best suitable approach
where different IoT owners might not want to have a single concentrated source
which has access to all historical events i.e., PDP of ABAC needs a PIP to make
access decisions. In addition, the ABAC should have workflow-related attributed
such as tasks sequencing, in practice, ABAC is not designed to handle this kind
of stateful access control. The number of static rules and the generic attributes
including the workflow-related attributes - that need to be configured to enforce a
particular workflow - at some point in time becomes unmanageable. In addition,
without strong modeling and validation of workflow rules in ABAC, a combination
of certain rules may lead to unintended access / or deny-of access, therefore, a policy
validation or verification tool must be used whenever a rule is updated. Current
research and some of the related open issues in ABAC are presented in [117].
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Related Work

In this chapter, detailed related work to this are presented and they are grouped
into three different categories (a) workflow specification, (b) Internet-of-Things,
and (c) smart contract generation.

8.1 Workflow Specification

Extensive work on the specification and enforcement of workflows can be found in
the literature; in particular, Bertino et al. [22] studied how to model and enforce
workflow authorization constraints such as separation-of-duties in workflows, but
using a centralized workflow management system. Workflow based access control
is also well-known (Knorr [118] calls them “Dynamic access control”), but this re-
quires a centralized WF enforcement engine. Basin et al., [119] model the business
process activities as workflows with a special focus on optimizing the authoriza-
tions permissions. Van der Aalst in [31, 33] studied how Petri Nets can be used to
model complex workflows and verify some of the workflow properties. Atluri et al.,
[120, 21] studied how to model workflows using Petri Nets, but did not describe
the implementation details. Huang et al., [121] presented a web-enabled workflow
management system, and Compagna et al., [122] presented automatic enforcement
of security policies based on the workflow-driven web application, but both works
presented a centralized architecture. Reiko Heckel [88] showed how Open Petri
Nets are suitable for modeling workflows spanning different enterprises. No ex-
isting work discusses how to handle error conditions during workflow execution,
support or integrate practitioner-friendly design and specification tools, enforce
cross-organizational agreements or commitments (i.e., process integrity) and to en-
force them to achieve workflow-aware access control with a special focus on modern
IoT systems.

Mortensen [123] presented a method for automatic implementation of systems based
on CPN models. The paper does not describe the algorithms and data structures
used to implement the code generation tool, but rather the context of the tool.
The paper shows that the method introduced reduces the development time and
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cost compared with prevailing system development methods where system imple-
mentation is accomplished manually by evaluating it on a real-world access control
system. We refer to the concepts presented in this work for generating smart con-
tract code from our Petri Net workflows.

Lodderstedt, Basin, and Doser in [124] presented SecureUML, UML based modeling
language for model-driven security, their approach is based on role-based access
control with additional support for specifying authorization constraints. Similarly,
Jan Jurjens [125] presented UMLsec (an extension of UML) for secure software
development.

Linhares et al., in [126] presented an empirical evaluation of OMG SysML’s to
model an industrial automation unit using the open source modeling tool Modelio
[127] but not in the context of modeling workflows for access control.

Wolter et al., [128] showed a model-driven transformation approach from modeled
security goals in the context of business process models into concrete security im-
plementation. Their work focuses on service-oriented architecture. The security
annotated business processes are transformed into platform specific security access
control or policy languages such as XACML; in particular, they considered security
goals such as confidentiality, authentication, and data integrity.

8.2 Internet of Things

Access control solutions for IoT systems have been extensively researched. Some
of the issues in access control in IoT, and a Capability-Based Access Control (Cap-
BAC) approach is presented in [129], where the authors investigated how such
CapBAC system can support delegation, revocation, and granularity. However,
their approach is implemented using Java and has not been evaluated on IoT de-
vices, and do not focus on workflow-aware or history-based access control. A similar
capability-based model intended for federated machine-to-machine communication
in IoT networks is introduced in [130], in this approach, in addition to capabilities,
context-aware information i.e., a context attribute is combined to accommodate
dynamic access policy enforcement. In Capability-Based Context-Aware Access
Control (CCAAC) [130], the authors focused on introducing a capability propaga-
tion protocol for authority delegation. However, these capability-based approaches
did not focus on history-based access control.

In [19], an HCAP system is proposed for enforcing permission sequencing con-
straints in a distributed authorization environment. The authors formally estab-
lish the security guarantees of HCAP, and empirically evaluate its performance. In
their work, permission sequencing constraints are encoded as a Security Automaton
and embedded in a capability.
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The History-based Capability systems for IoT (HCAP) approach extends the con-
cepts of Security Automata to the IoT environment, but the HCAP approach has
its limitations because of the following reasons:

• (a) the IoT (or Resource Server (RS)) needs to maintain the state information
locally and has to synchronize the state information to other devices and the
Authorization Server (AS) in the network,

• (b) when some messages exchanged are lost then it brings also additional
overhead to the introduced protocol,

• (c) besides, this approach does not focus on establishing a language for work-
flow specification, or to provide accountability features,

• (d) as it is based on process algebra, it is not practitioner friendly1.

Previously mentioned approaches do not support accountability in a decentral-
ized and trust-less environment. To tackle this, other researchers proposed to use
blockchain-based access control mechanisms. In [23], a blockchain-based access con-
trol method is presented and in their approach the attribute-based access control
policies and concepts are used in the bitcoin blockchain system. In [131], a survey of
blockchain-based access control solutions and their challenges are presented. In this
section, the solutions that focus on IoT and are relevant to this thesis are discussed.
In [24, 25] a smart contract-based access control solution for IoT is proposed. In
[24], each smart contract may contain only one access control rule i.e., subject-
object pair with associated rights, in addition, to track misbehaviour of resource
access, each resource maintains a list that contains the subject that has accessed
the resource with timestamp info and if the subject already had any penalty or not.
Moreover, the implementation was based on Ethereum Blockchain and Raspberry
Pi devices were used as IoT devices. In contrast, in [25], a single smart contract
may contain many access control rules and this approach uses a management hub
as a proxy component between the IoT devices. The management hub could be a
powerful device to handle complex computational tasks that the IoT devices might
not be able to perform. In [132], the authors present a novel attribute-based access
control scheme for IoT using blockchain, the proposed scheme uses the elliptic curve
cryptography to create public/private keys and the requester proves to the resource
server that he/she has access to the subset of the attributes by signing appropriate
request-info it with the private key he/she holds. The resource server, then checks
the signature with the help of information published in the blockchain and decides
whether to provide access or not.

The authors of [133] introduced ‘ControlChain’ to restrict access control in IoT
with the help of four different blockchains: Context Blockchain, Relationships

1“Despite its strengths, after almost 30 years the use of process algebra outside the academia is
still very limited. Due to some of its technicalities, process algebra is perceived by practitioners
as being difficult to learn and use …” [20].
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Blockchain, Rules Blockchain, and Accountability Blockchain to store context in-
formation, relationships, access control rules, and accountability information re-
spectively. To support different access control models such as RBAC, ABAC,
and CapBAC, they propose to use a decoder that converts required access control
policies into compatible rules - which is a combination of ACL, capabilities, and
attributes. However, the paper did not explain how it can be done without affecting
the access control properties of different models.

Nevertheless, none of the blockchain-based access control approaches for IoT uses
or proposes the concept of history-based access control concept i.e., the workflow-
aware access control methodology and other challenges such as practitioner-friendly
modeling, validating smart contracts, and error-recovery features that this thesis
focuses.

Other than the HCAP approach [19], so far, no other approach tackles the core-
problem of workflow-aware or history-based access control in an IoT environment.
In addition to that WFAC tackles i.e., accountability, a way to handle error con-
ditions, or support integration of practitioner-friendly tools and support the inter-
operable methods such as OAuth in a distributed IoT environment. In addition,
most of the other approaches do not focus on privacy issues (e.g., protecting the
identity of the client) in situations where the IoT devices are not able to protect
the communication channel between the client and the resource server.

A State-of-the-Art analysis of related work in terms of specification and enforce-
ment of distributed workflow execution and access control that supports the IoT
environment is performed and a comparison is shown in Tab. 8.1. The description
of the legend is as follows:

• (+) supports the marked feature;

• (-) does not support the marked feature; and

• (o) partially supports the marked feature.

This comparison is performed only with IoT context and distributed Workflow-
Aware access control and features this thesis is focusing on.

Table 8.1: WFAC Related Work Analysis with overall distributed workflow and IoT
Focuses

Related Work IoT
Fo-
cused

Distributed
Access
Control

Distributed
WF Exe-
cution

Process
Aware

Practitioner
Friendly

Error Re-
silience

WFAC ([26,
27, 28, 29])

+ + + + + +

Continued on next page
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Continued from previous page
Related Work IoT

Fo-
cused

Distributed
Access
Control

Distributed
WF Exe-
cution

Process
Aware

Practitioner
Friendly

Error Re-
silience

Security Au-
tomata ([15,
16, 134])

- - - + - -

Service Au-
tomata ([17])

- + - + - -

HCAP ([19]) + + o + - o
Dynamic Ac-
cess Control
through PN
([118])

- - - + + -

Workflow
Nets ([31])

- - - + + -

SecureUML
([124])

- + - + + -

Blockchain
and Smart
Contract-
based access
control ([24,
25, 133, 132])

+ + o - - -

8.3 Smart Contract Generation

This section presents the related work in the area of a) generating smart contracts -
with a focus on security and b) translating business process models, state machines,
Petri Nets, or similar workflow models into a generic code. The first approach (a) re-
views the state-of-the-art approaches in generating smart contracts, and the second
approach (b) reviews the related work in the area of code generation by translating
business processes or workflows into a generic code. However, in this section, we
do not cover the related work in the area of identifying existing vulnerabilities in
already deployed smart contracts by symbolic code analysis or similar methods -
this is out of the scope of our research.

In our research, we focus on avoiding the errors prior to smart contract generation.
But integrating vulnerability analysis tools before deploying a smart contract will
certainly help to find and avoid existing library or code-based security issues. In
each paragraph below, we present one topic of related work and in the end, we
discuss the problems and advantages of each method (if they exist). We considered
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the experiences, knowledge, and recommendations from the presented related works
for designing and implementing our approach.

Garcia et al., in [135] presented a method for compiling a Business Process Model-
ing Notation (BPMN) process model into a smart contract defined in the Solidity
language. The authors used the approach of the control flow of workflow-nets from
[136] to translate BPMN to Petri Nets, to eliminate invisible transitions and spu-
rious places, and thereby, optimizing the gas costs for the deployed Solidity smart
contract in Ethereum blockchain. Nakamura et al., in [137] presented a similar ap-
proach: first, they use BPMN to model inter-organizational business processes, but
it is translated into state charts and represented as State Chart XML (SCXML);
second, they optimize the state chart and then produce the chaincode (using Go
language) for Hyperledger Fabric. The papers [135, 136, 137] did not focus their
work to build secure smart contracts, which is one of the limitations of their work.

Mavridou et al., presented two frameworks in [138, 114, 139] respectively: (a) finite
state machines (FSMs) based framework called FSolidM, which provides a graph-
ical editor for specifying Ethereum smart contracts as transitions systems and a
Solidity code generator; (b) VeriSolid framework, which introduces formal verifi-
cation capabilities. Their FSolidM framework provides a graphical user interface
(GUI) and has the ability to integrate custom plugins for developers to add further
functionality such as automated timed transitions and access control. Thereby,
their approach is very close to ours in terms of correctness-by-design development
of smart contracts. As this work was done in parallel to ours and also suitable to
generate secure smart contracts, we complement their approach to generate secure
smart contracts. A separate study is required to compare our approach, which
could be future work. However, the semantics of the state machines can be hard to
understand compared to the semantics of Petri Nets. Furthermore, we argue that
the semantics of Petri Nets are much more suitable than FSMs to model concurrent
and interactive systems such as smart contracts.

Philippi in [140] presents an overview of different code generation approaches from
high-level Petri Nets. In particular, they investigated the simulation-based code
generation approach. Mortensen in [123] presented a method for generating code
from CPN. First, the developed CPN model is used to generate the standard ML
code then, the ML code is used to generate a platform-specific code, for example, in
C language. They evaluated this approach by generating code for an access control
system. Their work also shows that the introduced automatic code generation
method reduces the code development time and errors in comparison to the manual
system development methods. Pinna et al., in [141] analyzed the Bitcoin blockchain
network using a Petri Net model to find the group of Bitcoin addresses owned by
the same owner, disposable addresses and explained the advantages of Petri Nets
modeling. However, this approach is not related to smart contract generation,
but shows the advantages of using Petri Net modeling. The approaches taken in
the papers [140, 123] show the advantages of using Petri Nets such as automatic
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code generation, reducing code development time and errors, and evaluating the
generated code for security systems like access control.

Choudhury et al., in [142] presented an automatic smart contract template gener-
ation framework that uses ontologies and semantic rules to encode domain-specific
knowledge and uses the structure of abstract syntax trees (AST) to incorporate the
required constraints into the generated template. The authors evaluated two use
cases and presented a few examples of the generated SC code snippets in Solidity
language. Tateishi et al., in [143] presented another approach to generate automatic
smart contracts that can be deployed in Hyperledger Fabric, their approach uses a
document template and a controlled natural language (CNL) that provides a formal
model which is then used to generate the smart contract with a toolchain. Both
the approaches [142, 143], point out that we need human-understandable methods
that can help to create smart contracts, but they do not focus on generating secure
or error-free smart contracts.
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Chapter 9

Actors and Definitions

This chapter introduces the actors and definitions involved in the WFAC framework
and presents an overview of the contributions to be detailed in Chap. 10, 11, and
12.

9.1 Actors

This section presents definitions of actors involved in the proposed WFAC frame-
work. Some definitions are taken from standard computer security textbooks, and
standardization bodies, such as NIST, and when necessary, new definitions are
introduced as part of the thesis.

Definition 9.1.1 (Entity). “An individual (person), organization, device, or pro-
cess. ”Party“ is a synonym” (see [144]).

Definition 9.1.2 (Principal). “A principal is an entity that can be granted access
to objects or can make statements affecting access control decisions” (see [145]).

Definition 9.1.3 (Subjects and Objects). “A subject is an active entity within an
IT system. The objects of access control are files or resources, such as memory,
printers, or nodes in a computer network. […] Depending on circumstances, an
entity can be a subject in one access request and an object in another. The terms
subject and object merely distinguish between the active and passive party in an
access request.” (see [60])

This thesis discusses actors involved in IoT using the terminologies used in the
OAuth, and in addition, how the terms are used within the proposed WFAC context
is explained below.
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Definition 9.1.4 (Resource Owner (RO)). An entity capable of granting access to
a protected resource in a Resource Server (RS) (see [48]).

In the context of the WFAC, the Resource Owner (RO) is referred to as the actual
owner of RS. Also, the RO can delegate his capabilities to its subordinate, also re-
ferred to as authority who then is capable of granting access to a protected resource
in RS.

Definition 9.1.5 (Resource Server (RS)). The server hosting the protected re-
sources, capable of accepting and responding to protected resource requests using
access tokens (see [48]).

In the context of the WFAC, the RS is usually a constrained device, but it can also
be a normal resource available via a web service.

Definition 9.1.6 (Client (CL)). An application making protected resource requests
on behalf of the resource owner and with its authorization. The term “client”
does not imply any particular implementation characteristics (e.g., whether the
application executes on a server, a desktop, or other devices) (see [48]).

In the context of the WFAC, the client is referred to as the application available
inside a handheld or smart phone.

Definition 9.1.7 (Authorization Server (AS)). The server (typically, a powerful
machine) issuing access tokens to the client after successfully authenticating the
resource owner and obtaining authorization (see [48]).

Definition 9.1.8 (Owner). An entity, usually a person or an organization, who
owns the object in the discussion. The object could be either physical or digital,
e.g., a device or a workflow.

Definition 9.1.9 (Authority). An entity different from the owner of the object in
the discussion (e.g., a resource server) and is capable of performing some privileged
actions (e.g., granting access to a protected resource in the resource server) on the
object.

Definition 9.1.10 (Stakeholder). Individual or organization having a right, share,
claim, or interest in a system or in its possession of characteristics that meet their
needs and expectations (see [146])
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In other words, an entity who may or may not be the owner of the object in the
discussion (e.g., a resource server) and has some rights, powers, or interest to control
the behavior or usage of the object.

Definition 9.1.11 (User or Workflow Participant). An entity that is participating
or executing the workflow by doing tasks defined in the workflow.

9.2 WFAC Definitions

This section presents the workflow related definitions.

Definition 9.2.1 (Workflow). A workflow describes a set of tasks that must be
performed in a particular order, i.e., there are some constraints that determine
which orders of the tasks are admissible and which are not. From a mathematical
point of view, those constraints generate a partial order on the tasks. The workflow
does not contain any loops. If a loop is required, then a new workflow could be
started.

A workflow (in the context of this thesis)

• is specified by one or more owners or stakeholders,

• is distributed - in terms of:

– ownership aspects:

∗ when owners and stakeholders specify a workflow (also known as the
main-workflow), the objectives of the workflow, interfaces between
different resources, and possible penalties for misbehavior are agreed
by all involved owners and stakeholders. A main-workflow can have
different sub-workflows from different owners and stakeholders. The
sub-workflows and its internal aspects need not be shared with other
owners or stakeholders, by doing this, the confidentiality aspects of
individual owners or stakeholders are preserved. In case of misbe-
havior, a judge (a trusted third party) or a decentralized consensus
mechanism is used to blame the party that misbehaved.

∗ in order for the workflow to be executable, each owner must ensure
that their devices (or resources) are available and they respond as
specified or agreed at all times. Note: workflow specific conditions
may apply when the promised guarantees are not satisfied.

– execution aspects:
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∗ the main workflow or its sub-workflows can be executed by different
workflow participants simultaneously. Therefore, each participant
will have his/her own view of the main workflow.

• has one start place and one end place. The initial state of the workflow may
have static tokens already available - representing the services available - and
the workflow participants provide dynamic tokens during the runtime to the
workflow which changes the workflow behavior. As the workflows are modeled
in Petri Nets with the above mentioned properties, they can be analyzed for
certain properties, such as soundness and liveness - refer to “Workflow-Nets”
which was introduced and studied by Van der Aalst (see [147]) extensively.

• is considered completed when a token reaches the end state of the workflow.

Definition 9.2.2 (Task). A task in a workflow is atomic and cannot be sub-divided.
When a task is completed, then it changes the workflow state. Note: at the im-
plementation level, a task is executed as a series of “micro steps”, that means
depending on the abstraction level, it can be divided into a sequence of multiple
small steps.

A task (in the context of this thesis),

• is interpreted as the actions committed by individual participants that help to
synchronize different participant actions to a particular step of the workflow

• requires one or more entities (e.g., computer process or human workflow par-
ticipant) to perform the task,

• takes some input data (e.g., from different participating entities participat-
ing) in the form of tokens and processes them according to the predefined
conditions, and

• finally, it produces one or more outputs tokens (e.g., task completed, addi-
tional tasks or even new sub-workflows).

Definition 9.2.3 (Workflow Integrity). The property that guarantees that the work-
flow is executed as specified by the owners and stakeholders is known as workflow
integrity (i.e., no unauthorized entity can change the workflow by adding or deleting
or modifying the tasks or the order in which they are processed). As an exception,
to handle error conditions, the responsible authority (an authorized entity) is able
to provide an error-token or a new workflow to handle foreseen and unforeseen
conditions respectively.

One of the thesis goals is to ensure that the workflow is able to handle error con-
ditions. There are two different types of errors:
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• foreseen errors:

– errors that are expected to happen on certain conditions, e.g., failure of
a device

– errors that can be handled by integrating the alternative logic within the
workflow and without manual intervention by the responsible authority

To handle this, authorized entities (e.g., usually the owner of the workflow)
provide error-recovery tokens (e.g., a token signed by the owner’s private key)
to the workflow participant; this error-recovery token triggers the alternative
logic embedded within the workflow to handle error conditions.

• unforeseen errors:

– errors that are not expected, e.g., an error that has not occurred or
known previously,

– errors that require manual intervention from the responsible authority

To handle this, the responsible authority may provide a new workflow to
the participant and terminate the old workflow manually. The authority
must perform required accountability measures, such as logging the reason
for the failure (if known), collect and document available context information,
and inform relevant entities to take necessary action to prevent this in the
future. Once a root cause of the error and an appropriate solution is found,
the solution or preferred recovery mechanism could be embedded within the
workflow logic itself.

Definition 9.2.4 (Error-Recovery Tokens). Error-Recovery Tokens are tokens pro-
duced and signed by entities (usually, the owners or stakeholders) that enable the
workflow participants to recover from error situations faced while executing the
workflow.

An error-recovery token:

• includes necessary information encoded in a recognizable format by the work-
flow execution system, for instance, the workflow application running in the
handheld.

– e.g., a token

Definition 9.2.5 (Proof-of-Possession Tokens). A token may be bound to a cryp-
tographic key, which is then used to bind the token to a request authorized by the
token. Such tokens are called proof-of-possession tokens (or PoP tokens) (see [3]).
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Definition 9.2.6 (Workflow-Aware or Workflow-Drive Access Control). An access
control method where subject requests to perform operations on objects are granted
or denied based on the workflow information, i.e., (tokens) provided by subjects,
workflow state, objects attributes and a set of conditions that are specified in the
workflow task which is executed by the subject.

This thesis focuses on enforcing the WFAC in a distributed environment, therefore,
known as the Distributed WFAC.

9.3 Contributions Overview

This section presents an overview of the contributions of this thesis. The contribu-
tions focus on addressing the research questions and goals presented in Sec. 1.1.1
and Sec. 1.1.2, and challenges presented in Sec. 2.

The State-of-the-Art analysis addressing the scenario focused on the thesis, IoT
technologies, modeling workflows and enforcing them are presented in Part. II -
see Chap. 7 and Chap. 8. Existing mechanisms (see Chap. 8) are not sufficient
to satisfy the goals and requirements of this thesis. Thus, centralized workflow
management systems and mechanisms that require constant synchronization with
a centralized workflow server are not suitable for a distributed IoT scenario where
devices may not have connectivity to that central server at all times.

The requirements of the envisioned workflow specification and enforcement frame-
work are the following:

• A method that binds an access control to the tasks defined in an autho-
rized workflow and enforces the integrity of the workflow in a distributed IoT
environment.

• The proposed method should support dynamic workflows that can handle
error conditions, i.e., allowing to integrate on the fly sub-workflows without
changing the objective of the main workflow.

• The developed method and its components should be modular, interopera-
ble, and user-friendly. For instance, it should support existing authorization
standards such as OAuth and should support the integration of practitioner-
friendly tools for modeling workflow.

• The proposed framework must support accountability features. For instance,
the workflow participants should be held accountable for their actions com-
mitted, i.e., when necessary, the framework should support retrieval of in-
formation related to actions and prove which entity committed that action
while executing the workflow.
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As a result, the contributions of the thesis are categorized into three different as-
pects: (a) workflow specification and enforcement; (b) IoT protocols and services to
support the workflow execution; and (c) to support accountability in a distributed
environment.

• Chap. 10: Introduces the Petri Nets based workflow specification and execu-
tion framework (also known as the WFAC)

• Chap. 11: Presents the IoT Protocols and Services to support the introduced
WFAC framework.

• Chap. 12: Presents the accountability efforts using the distributed ledger,
e.g., blockchain for storing workflow execution related information. As part
of the WFAC framework, the Petri Nets based secure smart contract genera-
tion framework is introduced which generates smart contract templates from
workflows specified in Petri Nets.

Finally, in Chap. 13 the WFAC framework and its components with architecture
description and their interaction with each other are described with a demo use
case and a prototypical implementation.
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Workflow Specification and
Execution

In this chapter, Petri Nets based workflow specification and execution related con-
tributions are described in detail. In particular, it describes how Petri Nets are
extended to support the requirements and goals identified in the thesis.

10.1 Petri Nets for Workflow Specification and
Execution

The advantages of using Petri Nets (PN) over other workflow specification and
verification approaches are presented in the Sec. 4.4.1. The advantages of PN can
be categorized into technical and non-technical advantages.

The technical advantages are the following:

• PN provide the formal semantics for designing workflows such that PN work-
flows are amenable to verification of certain properties, such as being deadlock
free. Another possibility is to analyze the soundness properties of a workflow.

• PN provide the ability to model concurrent and distributed processes.

• With PN one can limit the expressiveness of workflows, i.e., Turing complete-
ness can be avoided and therefore, the workflows and their execution path
are computationally analyzable.

• PN can be extended, for example, colored Petri Nets, Open Petri Nets, and
Hierarchical Petri Nets.

• PN workflows are technology or platform-independent. Therefore, it can be
used to implement and integrate platform or technology dependent multi-
tenant processes

The non-technical advantages are the following:
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• Workflows modeled via PN are easy to understand because of its intuitive
graphical nature and easy to model tools.

• The interactive token-game semantics of PN allows even a novice business
user to design, validate, and analyze the workflow.

• As described earlier, existing practitioner-friendly tools that collect require-
ments and create activity diagrams can be integrated with custom tools to
generate Petri Net workflows.

This thesis has chosen Petri Nets for workflow specification and enforcement frame-
work because of the above mentioned technical and non-technical advantages. In
the literature, Petri Nets were used only for modeling and analyzing workflows,
but this thesis is using the Petri Net model also for enforcing workflow integrity
and integrating access control mechanisms suitable for IoT. The expressiveness of
Petri Nets and the state-transition model of Petri Nets support the basic primi-
tives needed to model a workflow process precisely. Extensions of Petri Nets such
as high-level Petri Nets, Open Petri Nets, and Workflow Nets enable specifying and
modeling complex workflows that involve solving different issues such as concurrent
task execution and separation-of-duties.

Overall, Petri Nets satisfies the important requirements to specify and model work-
flows, but not all the requirements and goals required to fulfill the use cases that
this thesis envisioned to solve. The use cases are presented in Sec. 15.

The following extensions are introduced to the Petri Nets:

• (a) to support interaction between distributed processes in IoT that needs
interaction between devices that execute workflow processes, devices, and
other services.

• (b) to support and evaluate complex workflow conditional requirements, for
instance, timeouts involved in a certain transaction.

• (c) to support the capability of handling error conditions and dynamic work-
flows.

10.1.1 Extension to Petri Nets Places and Tokens

This thesis has introduced the following additional concepts as extensions to clas-
sical Petri Nets places and tokens:

• Permissions, endorsements, money (crypto coins), signature, or any informa-
tion that is required for the workflow execution can be represented as tokens
within the Petri Net. Thanks to CPN, different types of tokens can be used
in the same Petri Net to model workflows where entities exchange different
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LEGEND

a place an oracle

a transition an activated transition

WF-step(a) WF-step(b)

Figure 10.1: WF-step(a) shows the initial state of a Petri Net Workflow specification
with an Oracle. WF-step(b) shows the state of the workflow after the
first two activated transitions have fired.

information between them. In particular, OAuth tokens are used to enforce
access control in a step wise manner as specified in the workflow.

• An Oracle is a type of place, represented in star shape that can receive
tokens from an external source. In classical Petri Nets, places are repre-
sented as circles and they receive tokens from a transition. An oracle is
drawn on the boundary of a Petri Net to represent that it receives infor-
mation from an external source. Note: the term oracle is used in different
computer science fields, including cryptography, blockchain, and smart con-
tracts, etc. The introduced concept of an Oracle is similar to the Oracles
introduced in blockchain, i.e., it is used to receive external information in a
smart contract deployed in a blockchain system like Ethereum. The differ-
ence is the following: An Oracle place mentioned in this thesis need not be a
contract that is accessed by other contracts to pull information as described
in [148, 149]. If blockchain is implemented in an IoT application as a back
end distributed database, then an external service can push some informa-
tion into the blockchain. The published information in the blockchain can be
accessed by the Oracle via a predefined URL. Note: it is critical to enforce
strict access control that restricts who can publish such information in the
blockchain.

The main difference between an oracle and an Open Petri Nets (Open-PN) place
is an oracle can receive information from external sources whereas, open places
are mainly used to exchange tokens between workflows. Open Petri net places are
particularly useful when creating a dynamic workflow to exchange information with
the main workflow.
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Figure 10.2: Petri Net with Transition Contracts t1 and t2.

10.1.2 Extension to Petri Nets Transitions

As described earlier, with extensions to Petri Net places and tokens, workflows
can be specified with expressiveness, but we need a mechanism to evaluate com-
plex workflow conditions. To realize this, the transitions should be able to verify
conditions and evaluate information encoded in the tokens.

For this purpose, small contracts are embedded into the required transition of the
Petri Net. For our requirements both Bitcoin and Ethereum languages are not
suitable. Bitcoin’s stack language is not flexible and Ethereum’s solidity language
could be vulnerable (see [112]), as verifying such contracts is not possible. There-
fore, a language that is flexible specifying conditions and at the same time verifiable
is required. We use a simple guarded command (a conditionally executed state-
ment) language (similar to [150]) to write such contracts. Therefore, the conditions
written on a single transition using a simple smart contract language is called a
transition contract. On a high level, a complete Petri Net workflow with small tran-
sition contracts can be seen as a typical smart contract comparable to a blockchain
based smart contract. The conditions that are written in the transitions of Petri
Nets workflows are called transition contract.

Figure 10.2 shows a simple Petri Net where two transitions (T1 and T2) have a
pointer to the transition contracts (TC (a) and TC (b)) respectively. Note: smart
contracts do not always have to run on the blockchain, they can also be implemented
between two or more parties without blockchain technology.

The properties (or rules) for each transition can be seen as small smart contracts
that restrict the choices of the participants of the workflow for this step, or they
impose additional conditions. The combination of a few transition contracts allows
us to create multi-step smart contracts. The first transition creates a token based
on some conditions (which may verify authentication or authorization status of
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participants), and then the second transition produces an OAuth token that can
only be used in a subsequent transition in a particular way. The allowed actions,
permissions of workflow participants are determined by the Petri Net and the next
transition contracts. The combination of Petri Nets and transition contracts is used
to specify, enforce sequences of atomic transitions (transactions), such that process
integrity is guaranteed.

A transition performs three steps before firing:

• First, it takes tokens from the input places (could be a normal place, open
place, or an oracle).

• Next, it verifies the validity and properties of input tokens.

• Finally, it evaluates the conditions described (as guarded commands) in the
transition contract and produces the output tokens in output places (could
be a normal place, open place, or an oracle).

An output produced by the transition contract can be a token representing infor-
mation or a workflow for one or more entities. When the proposed WFAC method
is used, compromising one device may not compromise other devices.

Example:

To explain, let us consider a workflow that is defined by a company for updat-
ing Firmware on its IoT devices. Assume that the devices could be triggered
to update its Firmware Over-the-Air (OTA) whenever a new Firmware is avail-
able. Assume that an attacker compromises one device (how he compromises
is not relevant here) and updates a malicious firmware on it. The attacker
broadcast the new (malicious) firmware to other legitimate devices such that
he could take control over other devices too. This attack is mitigated because
the corresponding firmware update workflow as specified by the company must
be initiated and a legitimate service person needs to do several steps (for exam-
ple, provide authorization credentials) before the devices may get into the state
where it will accept firmware via the broadcasts channel. Note: if the attacker
is able to compromise one of the devices that are involved in the workflow to
update the firmware, then it becomes a serious issue - this particular attack is
discussed in detail in Sec. 14.3.

By default, the Petri Net transitions fire when the input places have enough tokens.
In many real-world use cases, it is important to have the notion of time required
for a task completion. Some tasks in the real-world might require just 10 minutes,
and others might need some hours. If a transition is waiting for a token to arrive
in one of its input places, it probably does not want to wait indefinitely.

Timeouts are required to stop transitions from waiting indefinitely. Sometimes, a
user or an entity may fail to complete a task in a workflow that is expected to
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Figure 10.3: Timeout Transitions in Petri Net Workflows

be completed within a certain time. That transition may wait forever to get a
token in one of its input places. Timeout transitions are introduced to solve this
problem, i.e., after a predefined time expires, the timeout transition executes a set
of predefined timeout conditions (in contrast to the regular conditions) and fires
a timeout token in its output place. These timeout tokens may contain or invoke
the dynamic workflows. It is important to specify when the timeout timer should
start and stop in the timeout transition. If all the input tokens are available before
the timeout occurs, then conditions of regular transition contracts are executed to
produce tokens. Therefore, every timeout transition has two instructions: first,
a timeout instruction (timeout contract) is enforced when a timeout occurs and
some of the input tokens are not available; second, a regular instruction (transition
contract) is enforced when all the input tokens are available before timeout.

The example workflow is shown in Fig. 10.3 explains a simple use case of a timeout
transition. Consider that the task t2 must be completed within some time (x
minutes) after the task t1 is completed. When task t1 is completed, then transition
t1 produces a token in place (a). A token in place (a) triggers the timer to start
in transition t2. Now, the timeout transition t2 executes one of the three possible
cases:

• Case 1: the timer expires after x minutes (timeout) and place (b) has no
token then, the timeout transition contract is executed. A timeout transition
contract is similar to a traditional contract but is used only to define what
happens after a timeout.

• Case 2: the timer has not expired and place (b) has a token then, the regular
transition contract is executed.

• Case 3: place (b) already has a token before task t1 is completed then, the
transition t2 waits until task t1 is completed. When both the input tokens
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(a and b) are available, the regular transition contract is executed.

10.1.3 Analyzability of Petri Nets Extensions

Petri Net extensions presented in this thesis (which we now refer to as ξ-PN) has
transitions of the form: τ : g → a, where τ is the transition, g is a guard, and a
is an action, uses an arbitrary program (e.g., a Python program) to implement the
guard g. For instance, it is common to use such a program to validate the token.
We assume that all the python programs used in different transitions halt because
the user will notice it and eventually update the program.

In basic Petri nets, the transitions exhibit the so called ‘AND’ property, i.e., if a
transition has sufficient input tokens then the transition fires and produces a token
in all output places. To analyze ξ-PN introduced in this thesis, the transitions are
translated into conventional Petri Nets with the ‘OR’ property (ζ-PN), i.e., when
a transition has sufficient input tokens then the transition produces tokens in one
or several places.

Let ξ-PN be the Petri Nets with extensions introduced in this thesis and ζ-PN be
translated basic Petri Nets with ‘OR’ transitions. In ζ-PN transitions fire in a non-
deterministic way, therefore, every trace in the ξ-PN is also a trace in the ζ-PN,
but not vice-versa. Security is a safety property. To prove that a system is secure,
we must ensure that the system satisfies a safety property in terms of Schneider
(see [15]). Therefore, when a safety property is satisfied in the translated ζ-PN,
then it is also satisfied in ξ-PN also, i.e., when the translated Petri Net ζ-PN is
proven secure, then the extended Petri Net ξ-PN is also secure but not vice-versa.
Therefore, the extensions introduced to the Petri Nets are analyzable.

10.1.4 Dynamic Workflows

The proposed Petri Nets workflows are designed to solve use cases that include
interaction with real world IoT devices and actors. In such cases, a workflow
should handle error conditions or unexpected situations to an extent. Dynamic
Workflows are introduced to handle such special situations with authorized user
decisions and so on. Note: such dynamic workflows must also be verified together
with the main workflow (at least during its creation), i.e., without changing the
goal or purpose of the main workflow. Protecting the integrity of the processes and
allowing dynamic workflows may be competing goals, but it must be assured that
only the “authorized” entity can create dynamic workflows and any misuse must
be penalized. Therefore, the requirement to have the accountability of actions
performed by the participants while executing the workflow is important.
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Figure 10.4: Two different workflows WF (a) and (b) exchange information using
Open Petri Net places (oa and ob)

Thanks to Open-PN (see [88]), which can create an entry and exit points between
Petri Nets, i.e., Open Petri Net places can be used to exchange information between
Petri Net workflows. Exchanging information in the form of tokens simplifies the
integrating of two or more Petri Net workflows. Open Petri Nets enables the inter-
action between other Petri Net workflows or processes. Open Petri Nets are also
used to design, build, and evaluate Hierarchical Petri Nets.

Example:

Fig. 10.4 shows two different workflows WF (a) and WF (b) exchanging tokens
via the open place (oa and ob). An open place exists on the boundary of
the workflow, and the equivalence (=) sign identifies the entry and exit places
between two workflows. The open place (oa) is an exit place for WF (a) and
an entry place for WF (b).

10.2 Usability

To ensure that the introduced security procedure is adopted and followed by the
end-user and practitioners, the security experts must design the security proce-
dures or mechanisms in a user-friendly way. People try to circumvent the newly
introduced security procedures when additional security procedures interrupt their
normal work (see [151]).

This thesis envisions that the proposed access control method is usable with the
practitioners and can be integrated with day-to-day work performed by the people.
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Wherever one has a workflow that must be followed in their day-to-day work can
be identified, then apply the proposed method to reduce privilege abuse, i.e., grant
access to protected resources via the WFAC. Also, the thesis ensures that practi-
tioners can easily migrate to the proposed security mechanism with little additional
effort by focuses on interoperability with existing tools and protocols.

To summarize, the main focus of this thesis on usability aspects are:

• Practitioners should be able to model workflows only with the business knowl-
edge or with little efforts to learn the modeling tools

• The deployed WFAC mechanism should be easy to use for the end-users. This
thesis recommends the practitioners to get feedback from the end-users and
try to fix the issues pointed out in the feedback.

• The proposed WFAC mechanism should be interoperable with existing in-
frastructure, i.e., compatible with existing security protocols and software
architecture. This is another important factor for a proposed system to get
adopted by the practitioners and system developers.

In the next section, this thesis presents its approach which enhances the practi-
tioner’s usability of the proposed WFAC approach. The modeling specification
language Petri Nets, even though it is supported by graphical modeling tools and
intuitive, is directly not suitable to be modeled by the business people, for example,
managers.

10.2.1 Systems Modeling Language (SysML)  Activity
Diagram

This thesis investigated how a practitioner (a software developer or engineer, even
a business manager) could use the WFAC method with existing and familiar tools.
One of the challenges is to model the interconnectivity among systems, i.e., dis-
tributed and interactive multi-organizational processes. Therefore, systems can no
longer be treated as stand-alone silos, but behave as part of a larger ecosystem
including human interaction. Such complex systems are known as the System of
Systems (SoS) [152]. It could be complex to design during the first phase such as
SoS models that include different software and hardware components only using
Petri Net tools. Software developers, engineers, and similar practitioners are fa-
miliar with UML, since, SysML is an extension to UML, it is easy to understand
and learn SysML notations. SysML supports the practice of Model-Based Systems
Engineering (MBSE) and is an extension of UML version 2. SysML’s usability has
been studied by conducting usability experiments in [39, 40, 126] and the empirical
results showed that SysML is usable and practitioner friendly for general purpose
modeling and domain specific modeling.
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The generally accepted method is to refine the specification in a stepwise manner us-
ing software engineering tools such as the OMG SysML activity diagram presented
in [153]. The Object Management Group’s OMG SysML [153] is a general-purpose
graphical modeling language that supports the specification, design, analysis, and
verification of systems that may include different software and hardware compo-
nents, people, tasks, and other entities.

SysML can represent different aspects of systems, components, and other entities
[152] such as:

• Structural composition, interconnection, and classification.

• Function-based, message-based, and state-based behavior.

• Constraints on the physical and performance properties.

• Allocations between behavior, structure, and constraints.

• Requirements and their relationship to other requirements, design elements,
and test cases.

SysML uses nine diagrams including the Activity diagram to represent the relation-
ships between entities in a complex SoS. In particular, the SysML Activity diagram
(modified from UML) represents the business/technical process in a defined order,
i.e., a sequence of actions to be executed based on the availability of their inputs,
outputs, and control. Moreover, the SysML activity diagram describes how the
actions transform the inputs into outputs. As this is a standardized approach, it
is easy for practitioners to use SysML Activity to describe complex systems and
processes (both technical and business). SysML activity diagrams lack mathemat-
ical semantics to check for inconsistencies, but the SysML activities are based on
token-flow semantics related to Petri-Nets [154]. Therefore, these activity diagrams
can be converted into Petri Nets (for example, colored) and then can be verified
using model checking tools (see [155, 156, 157, 158]).

Therefore, a practitioner-friendly open source modeling tool that supports SysML
known as “Modelio” [127] is proposed to draw SysML activity diagrams. Modelio
implements all SysML features according to the OMG’s specification, and it can
also be used to model BPMN and UML diagrams. An example screenshot of the
Modelio tool is presented in Fig. 15.4. SysML is used to model a high-level activity
diagram of complex processes and systems or SoS.
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InternetofThings (IoT) Protocols
and Services

As part of the chapter, the IoT related contributions are classified into two sections,
they are:

• (a) Privacy Enhanced Tokens for IoT devices: A profile for ACE-OAuth
2.0 for constrained devices was developed. This profile helps to protect the
identity of workflow participants accessing resources from resource servers
that are not able to protect the communication channel.

• (b) Receipt Tokens for Workflow Execution: A mechanism is developed to
guarantee whether the workflow participant has completed a task or not.
This mechanism produces tokens, also known as “Receipt Tokens” created
usually by the resource servers and given to the workflow participant.

This section discusses these two contributions in detail.

11.1 Privacy Enhanced Tokens (PAT) for
constrained IoT Devices

IoT devices also include constrained devices and some of those devices might not
be able to protect the communication channel, i.e., constrained IoT devices (RS)
are not able to use communication channel protection mechanisms such as DTLS.

In this scenario, the two following major problems must be addressed:

• (a) While accessing a resource from RS the responses from RS must be avail-
able only for the intended participant, i.e., Workflow Participant (WP).

• (b) identity of the workflow participant (which may include private informa-
tion) must be protected to anonymous entities eavesdropping the communi-
cation channel.
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Figure 11.1: An example ACE-OAuth PAT scenario and actors involved. The num-
bers explain the sequence of an authorization process and resource re-
quest between three actors. Notations: K is a shared secret (can be
both symmetric or asymmetric) and {encrypted message}.

To address these problems, this thesis has developed a profile for ACE-OAuth to
ensure the workflow participant’s identity is not leaked even in situations where RSs
are really constrained and cannot protect the communication channel. The profile
was also developed within the context of the European Union Project REliable,
Resilient and secUre IoT for sMart city applications (RERUM). Below, the ACE-
OAuth message exchanges are presented where a WP first acquires an access token
and then with that access a resource in the resource server.

The Privacy Enhanced Tokens for ACE OAuth (PAT) protocol is designed to work
with ACE framework [47] and ACE actors who were already introduced in Sec.
5.2. Please note that the PAT protocol specification was designed when the ACE
OAuth draft was in its 15th revision and was also published as an IETF draft (see
[30]).

In PAT profile for ACE, the following assumptions hold:

• A RS has one or more Resources (Rs) and it is registered with an AS

• The AS provides an AT for the CL to access R of RS. The corresponding RO
of the RS may assign allowed-permissions for WP in AS.

• The RS is offline after commissioning, i.e., RS cannot make any introspective
queries to the AS to verify the authorization information provided by CL.
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• A CL is either registered with an AS or it knows how to reach the RS for
accessing the required resources.

– To access a resource on a RS, a CL should request an AT from AS, either
directly or using its Client Authorization Server (CAS). For the sake of
simplicity, this memo does not include the actor CAS.

Based on the above described scenario, a simple ACE-OAuth PAT message flow as
shown in Fig. 11.1. A CL may perform a resource-request to RS without a valid
AT, then RS will reject, and it may provide AS information to CL in the response.
Such that, CL may go to the AS to get a valid AT. The RO may define access
control policies on the AS describing who can access the resources on a RS.

The messages exchanged are the following:

• (1) A common secret (k) is shared between the AS and RS while device
commissioning. We assume that RS stays offline after deployment and cannot
perform introspective calls to AS to verify the access token presented by CL.
This secret can either be symmetric or asymmetric in ACE-OAuth context.
In PAT, a symmetric secret is considered.

• (2) The CL performs an Access-Request to AS to ask for AT to access R on
RS. The AS checks if CL can access the R on RS or not, based on permissions
assigned by the RO.

• (3) If CL has sufficient permissions, then AS generates an AT plus a PoP key
bounded to the AT and the secret (k). AS sends both the AT and the PoP key
to CL via a secure encrypted channel. Note: CL and AS are not constrained
therefore, having a secure encrypted channel between them is possible and is
important for transferring this secret.

• (4) After receiving AT and PoP key, CL performs a resource-request to RS
by ACE-OAuth token construction method defined in PAT profiles - which is
described in detail below.

• (5) The RS can reconstruct the PoP key from the AT and verifies the received
AT. If it is valid, RS encrypts the response with the PoP key.

At the end of this phase, both CL and RS has established a common derived
secret. Later, CL can generate unlinkable Derived-Token (DT) from the initial AT
as described in section construction of derived tokens [30]. In particular, PAT is
designed to be used in contexts where unlinkability (privacy) and efficiency are
the main goals: The Token (Tk) are constructed in such a way that they do not
leak information about the workflow participant requesting the resource even via
multiple requests. For example, if an eavesdropper observes the messages from
different Workflow Participants to and from the Resource Servers, the protocol does
not give him information about which messages correspond to the same Workflow
Participant. Of course, other information like the IP-addresses or the contents
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themselves of the requests/responses from lower-layer protocols may leak some
information, and this can be treated separately via other methods.

The main features of PAT protocol are described below:

• The PAT method allows a RO, or an AS on its behalf, to authorize one or
several clients (C) to access resources (R) on a constrained RS. The CL can
also be constrained devices. The AT response from AS to CL MUST be
performed via secure channels.

• The RO is able to decide (if he wishes: in a fine-grained way) which client
under which circumstances may access the resources exposed by the RS. This
can be used to provide consent (in terms of privacy) from RO.

• The ATs are crafted in such a way that the client can derive Tk also known
as DT. The message exchange between CL and RS for the presentation of the
tokens MAY be performed via insecure channels. But the payload content –
if CL is performing a POST/PUT/DELETE request – from CL to RS or the
response payload from RS to CL MUST be encrypted.

• The RS can derive the PoP key from the AT of Resource Request message
from CL, but the response from RS to CL are encrypted.

• The Tks do not provide any information about any associated identities such
as identifiers of the clients, the tokens themselves, and the resource-servers.

• The Tks are supported by a “proof-of-possession” (PoP) key derived from the
initial AT. The PoP key allows an authorized entity (a client) to prove to the
verifier (here, the RS), that CL is indeed the intended authorized owner of
the token and not simply the bearer of the token.

To be coherent with the ACE Authorization framework [48], this draft also specifies
an ACE profile to use PAT and for efficient encoding it uses CWT and COSE. The
PAT profile is signaled when CL requests token from the AS or via RS in response
to unauthorized request response. The PAT profile will cover all the requirements
described in [48].

The detailed description of PAT protocol is presented in this IETF draft [30] and
is described in the appendix Sec. B of this thesis.

To calculate the overhead and performance, PAT was implemented in a constrained
device known as RE-Mote 1 using the IoT operating system known as Contiki 2.
The implementation was done via a joint work with ATOS as part of the EU project
RERUM [159]. As a result, PAT profile added ~ 10 % overhead on an average in
comparison to plain CoAP messages. The Fig. 11.2a shows the request-response

1https://zolertia.io/product/re-mote/
2https://github.com/contiki-ng/contiki-ng
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Figure 11.2: Performance Evaluation of PAT profile for ACE-OAuth

time when just CoAP is used and Fig. 11.2b shows request-response time when
PAT profile is used.

11.2 Receipt Tokens

This section presents a concept that enables workflow validation entities such as
resource servers and applications to validate whether a workflow participant has
performed the activity or not. Also, this mechanism enables the workflow partici-
pant to prove to another entity that it has completed a task in case of a dispute.
This thesis presents this concept in the form of tokens that contain workflow spe-
cific information signed usually by the resource servers, these tokens are introduced
in this thesis as “receipt tokens”.

Definition 11.2.1 (Receipt Tokens). Receipt tokens are tokens produced and signed
by entities (usually, the resource servers or IoT devices) attesting a task completed
by the workflow executor (e.g., a user) as part of a workflow.

In Fig. 11.3, an example Workflow (WF-a) and its use of receipt tokens are pre-
sented. In the shown example, a CL after getting an AT from an AS tries to access
a set of resource servers (RS1, RS2, RS3 and RS4) and their resources in a sequence.

Let us consider that RO of all four Resource Servers has configured the RS in the
following way:

• RS1 requires a valid AT from AS for accessing its resources to complete WF-a.

• RS2 requires a valid AT and a receipt-token from RS1 for WF-a.

• RS3 requires a valid AT and a receipt-token from RS2 for WF-a.

• RS4 requires a valid AT and a set of all receipt-token from (RS1, RS2, and
RS3) to access its special protected resource for WF-a.
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Figure 11.3: Clients (CL) using the receipt tokens to access resources from Resource
Servers (RS)

As shown in Fig. 11.3, message 3 shows the first receipt-token1 signed by the RS1
and it is sent together with the resource in an encrypted response to the workflow
participant initiating the request. If PAT profile is used, then the corresponding
PoP key is used for encrypting the response. So, only the CL with the right key
is able to decrypt the response. As you can note, to access RS4’s resource the CL
should present all receipt-tokens from all three previous RS. This brings additional
security to the protected resource but at the same time it also brings additional
overhead for the resource server because it must process all those receipt-token and
therefore, should have appropriate key material of other resource servers. How this
key material is transferred is not within the scope of this thesis. However, the
decision to add such additional protection to the resources or not is left with the
RO.

An example receipt tokens encoded in CBOR Web Token (CWT) are shown in the
Listing 11.1. The advantages of having the receipt tokens are discussed below and
are shown in the evaluation of WFAC and its attacker model Sec. 14.3.1.
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CWT Header:
{

"typ": "CWT", # type of token
"alg": "..." # algorithm used

}
CWT Payload:
{

issuer (iss) : RS_1, # Resource Server
subject (sub) : Hash(AT), # AT is the identifier in case of PAT
audience (aud) : WF-a (RS_2, RS_4), # necessary workflow info, tasks
CWT ID (cti) : "receipt-token_RS_1", # arbitrary identifier
expiration (exp): ..., # omitted for brevity
issued-at (iat) : ... # omitted for brevity

}

Listing 11.1: An example Receipt Token format their contents encoded in CBOR
Web Token (CWT) format
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Distributed Accountability and
Access Control

The WFAC framework enforces the users by restricting them to perform tasks
as specified in a particular order in the workflow. The WFAC framework uses
a distributed blockchain network to achieve accountability and transparency. The
blockchain technology provides availability, data integrity, non-repudiation (if public-
key signatures are used), and persistence properties, i.e., once a data block is
added by a user and becomes a valid block of the blockchain, it is impossible to
update/delete it without being noticed by others participating in the blockchain.
There are two main types of blockchain: permissioned and permissionless. A per-
missioned blockchain includes an access control layer that can enforce who can read,
publish, or approve transactions in a block chain (see IBM Hyperledger [160]). A
classic example of permissionless blockchain is bitcoin [105], i.e., anyone can partic-
ipate (publish and verify transactions) in the blockchain. To approve a transaction
or a block consisting of many transactions different consensus methods exist such
as proof-of-work, but it is not the focus of the thesis.

To achieve distributed accountability, the workflow participants may publish work-
flow information in the blockchain. When some tasks of a workflow are executed,
all information related to that task including who is executing the task, when
it started, when it stopped, and what were the outcomes of the tasks must be
logged for future reference. It is important that only authorized persons can write
into the log, and no one can tamper with the logging information. A permissioned
blockchain can be used to restrict the participants and the respective access control
restrictions. For example, IBM’s Hyperledger can be deployed as a permissioned
blockchain where entities require permissions to access and publish information in
the blockchain. When the workflow participant publishes the status of task (which
needs to be published in the blockchain), the stakeholders will verify and approve
the transactions in the blockchain. This provides transparency and accountability
in an immutable database without assuming a trusted centralized entity.

Distributed access control is achieved by enforcing token validation on the hand-
helds and on the IoT devices and services. Usually, a PN workflow is executed by
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one or more entities with the help of a handheld or more powerful device capable
of executing a Petri Net workflow. A trusted application installed on the entity’s
handheld is used for enforcing the validity of the tokens generated and received. If
the application is not trusted, then the IoT devices may also delegate these vali-
dation tasks to external services, for example, to check the blockchain for updates,
or, to pull information tokens from an oracle, etc.

12.1 Secure Smart Contract Generation Framework

In Sec. 8, we presented various approaches to generate smart contracts. In this
section, we present a method to create secure and safe smart contracts for platform-
independent blockchain systems. Our approach presents a secure smart contract
modeling tool using Petri Nets (PNs). Petri Nets allow us to visually model a
process or workflow that represents one or more business logic. Once the Petri Nets
are modeled and verified, our tool allows us to generate a smart contract template.
The exported smart contract template allows the smart contract developers to
extend the functionality before deploying it on the blockchain.

Our approach is not restricted to a particular blockchain technology. Our modeling
tool can be extended to support any blockchain platform or smart contract pro-
gramming language. For instance, now our tool is capable of producing a Solidity
Smart Contract (SC) template that can be deployed in an Ethereum blockchain.
The reason for selecting Solidity for the proof-of-concept (PoC) is solely for demon-
stration purposes and Solidity was not compared with other languages supported
by Hyperledger Fabric, as described earlier, as our architecture is modular it can
be extended to support other smart contract programming languages. The goal
of our work is to help business owners, developers, and resource owners to create
secure and safe smart contracts in a practitioner-friendly way. The modular soft-
ware architecture of our tool can be extended to provide SC template for different
blockchain systems.

In this section, we introduce our proposed Petri Nets based Secure Smart Contract
Generation Framework that involves a multi-step process to generate safe, secure,
and human-understandable smart contracts. Our approach focuses on security by
design approach and it is based on Petri Nets.

The requirements of a SC generation should be as follows:

• A SC should be easy to understand and write, i.e., human-understandable,
practitioner-friendly methods, and tools should be available to model the
business logic or workflows.
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Figure 12.1: Modular architecture of our Petri Nets based Secure Smart Contract
Generation Framework.

• A SC should be amenable to verification of process integrity, i.e., the smart
contract should only allow the authorized actors and restrict them to per-
form actions with least-privilege principle. For more information on process
integrity see [28].

• If necessary, the smart contract modeling language should support human
interaction, for example, to approve or reject conditions specified in a SC.

We designed our framework based on the above mentioned SC requirements. Fig.
12.1 shows a modular architecture of our proposed framework which consists of
following components: 1) a Petri Net Visual Modeling a graphical user interface
(GUI) where user can model, import, export and store Petri Net workflows; 2)
a Simulation engine that accepts Petri Net Markup Language (PNML) represen-
tation of the workflow and can execute each transition separately or a complete
Petri Net; 3) a verification engine that preforms Petri Net validation and can be
extended with standard Petri Net verification tools; 4) a code translation engine
that generates the smart contract from the Petri Net model. In addition to the
main components, our framework includes a SysML activity diagram modeling tool
to support practitioner-friendly methods, and a smart contract expert review pro-
cess to introduce a strict security auditing process within the framework before
deploying the generated smart contract into the blockchain network.
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The multi-step process of creating secure smart contracts starts with the stake-
holders who identify the use case requirements and create the necessary business
logic. To represent the business logic in a human-understandable way, we propose
to use the SysML’s activity diagram because it could be difficult to model complex
business logic directly in Petri Nets. Open source SysML modeling tool “Modelio”
[127] can be used to create activity diagrams. Later, the SysML activity diagram
can be translated into Petri Nets directly using automated tools (see cite: [155])
or by a workflow expert via our Petri Net Visual Modeling GUI as shown in Fig.
12.2.

A Petri Nets model can be created from scratch or can be imported from other
existing Petri Net models described in the PNML which is the standard XML
format to exchange Petri Net models. After importing, the PN model can be
modified, extended and stored according to the needs of the workflow expert.

During the modeling process, the user can simulate the Petri Net by executing each
transition separately or by fast-forwarding through the complete Petri Net. This
process allows us to test workflow logic already during the modeling process and
allows for fast iteration.

The next step is a verification process of Petri Nets that is performed by the Petri
Net Verification Engine. The Verification engine takes care of two main functions
(validation and verification) while the user models the Petri Net workflow. The
validation of Petri Net properties can help to optimize the business logic and to find
and avoid errors at the modeling state itself. Additionally, the external Petri Net
verification tools could be integrated that support PNML representation format.

Finally, the verified Petri Net model is provided to the Code Translation Engine
which produces the desired smart contract template. This translation engine is
designed modular and therefore it is blockchain platform agnostic. Currently, our
tool supports the generation of Solidity smart contract which can be deployed
in the Ethereum blockchain network but the modular design of the framework
support further extensions of code translation engine to support other blockchain
technologies. The generated smart contract can be a standalone contract or a part
of a big contract consisting of many SCs.

Below, we present a detailed description of every step. Once the template is gen-
erated, it might be necessary for a smart contract developer to complete the smart
contract with necessary business-logic details that were not modeled in the PN
model. In addition, a security audit on the smart contract may be performed
before deploying the SC on the blockchain.
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Figure 12.2: The user interface of Petri Nets based Secure Smart Contract Gener-
ation Framework featuring modeling canvas, toolbar, function menu
and library of modeled Petri Nets.

12.1.1 Petri Net Workflow Visual Modeling

Petri Net Workflow Visual Modeling provides the user with a visual modeling
graphic user interface (GUI), allowing to model Petri Net workflows through a can-
vas that guides the user with tips and information throughout the complete process
– i.e., from modeling the Petri Net workflow until the generation of the smart con-
tract. Our Petri Nets based Secure Smart Contract Generation Framework can
be accessed via a web browser and does not require any server-side dependencies.
Fig. 12.2 shows the user interface of the prototype which has four important ele-
ments: modeling canvas, toolbar, menu and workflow library. At the center of the
application there is the interactive modeling canvas used to model the Petri Net
workflows. The toolbar is located above the modeling canvas in grey color, and it
contains tools to add new elements to the canvas (e.g., places, oracles, transitions),
connect them with arcs and to edit, rename and delete them. As you can see in
Fig. 12.2, on the left of the canvas, there is the menu with functions to import
and export PNML representation of the modeled workflow, validate the workflow
and generate smart contracts. Just below the menu, there is the library listing all
stored Petri Net models that the user has created.

To ease the modeling process, GUI guides the user through the modeling process
with visual cues and annotations, helping the user to understand and create the
Petri Net workflow easily. There are three different element types that can be used
in the modeling process. A most basic Petri Net workflow consists of at least two
places a single transition, whereas the use of oracles is optional.

A place may represent a state of an actor in the workflow and it shall hold one or
more tokens. These tokens are consumed by a transition and are moved to different
places once the conditions of the transition are met and executed. Additionally,
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Figure 12.3: Transition edit view used to define guarded commands.

tokens can be of a different primitive data type (e.g., colored Petri Net tokens see
[85]). In our framework, currently supported token can be of a type string, integer
or a boolean, but the design is not limiting to only mentioned types.

The Oracles are a special type of places that represent external information that
can be accessed within a Petri Net and is in the framework considered as an external
parameter passed to the smart contract. Because the external parameters are
tightly dependent on the use case the generated execute function can be modified
by the smart contract developer in the review process in order to remove global
variables representing oracles and pass them as variable values to the function
according to the needs of the use case.

The transitions are extended with a guarded command language (see [150]) which
is used to enforce the business logic conditions. Each transition contains one or
more guarded commands. Each guarded command consists of a proposition and
a statement. A proposition is a condition and if it is true, it will lead to the
execution of the statement. The conditions are checked against the input tokes from
the incoming places using algebraic and boolean expressions. Those conditional
statements are written in the form of assignments, for example, x = expr where
x must be named the same as one of the outgoing arcs of the transition. An
expression (expr) can contain an algebraic expression that may include variables,
constants, and algebraic operators. Figure 12.3 shows the edit view interface of a
transition which is used to define the guarded commands. Every transition can
contain multiple guarded commands. The visual modeling engine enforces that
only the variables from the incoming places are allowed to be used in the expression
(expr). The exit or output place of a transition is decided based on the execution
of the statement and the transition may create new tokens, consume, or update
existing input tokens and push it to the output place.
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Additional functionality of the visual modeling engine is an option to save, import
and export Petri Net workflows. This also increases the interoperability of the
workflow development and allows the user to import basic Petri Net from other
modeling systems. To facilitate import/export function, the PNML standard and
its recognized exchange format are used. PNML exchange format is extended with
additional XML tags to represent additional logic that was introduced in the form
of guarded commands of the transitions, additional rules, and oracles. An example
PNML is shown in the appendix listing A.1.

12.1.2 Petri Net Simulation Engine

Petri Net Simulation Engine is introduced to ease the modeling and to iterate on
the workflow design during the modeling process. It consists of two main func-
tionalities: (a) execution of a separate transition - a process which consumes the
tokens from the input places of the transition based on the logic specified by the
guarded commands and produces the tokens, and assigns them to the output places
of the transition; (b) fast-forward of the complete Petri Net - a process which con-
secutively executes all transitions of the Petri Net based on the specified input
parameters and guarded commands, and validates that the model does not result
in a deadlock. The Simulation Engine interprets the PNML representation of the
modeled Petri Net.

12.1.3 Petri Net Verification Engine

Petri Net Verification Engine supports the GUI by actively monitoring the Petri
Nets visual modeling process and guides the user to correctly model the Petri Net
by pointing out errors - an example of such error is shown in Fig. 12.5. Once
the Petri Net model is completed without syntactic errors, then the verification
engine supports validation (i.e., see validation of the PN model in Fig. 12.4). The
verification of other Petri Net properties such as deadlocks, soundness, and liveness
can be done with the help of external standard Petri Net tools such as CPN tools
[85], WoPED [161], and YAWL [162]. The validation and verification of the PN
model is a mandatory step and its role is to enforce Petri Net modeling restrictions
by enforcing “validation” of modeled workflow prior to the generation of smart
contract template.

All enforced modeling restrictions are displayed to the user during the modeling
process through the visual cues providing the reasoning and instructions on how
to resolve modeling mistakes. An example of the user interface informing the user
of the successful validation is shown in Fig. 12.4, whereas Fig. 12.5 shows the
response with errors that were identified during the validation process. Until the
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user does not resolve all errors, the proposed framework prevents the invocation of
smart contract generation.

Petri Nets workflows are considered sound when it satisfies the following three
requirements (see [31, 33, 147]): a) an option to complete you should be able to
reach the end state or complete the workflow from any given state of the workflow;
b) proper completion - when a workflow is completed no tokens (incomplete tasks)
are left in the workflow; and c) no dead transition - every transition in the workflow
can be executed by following the appropriate path. To facilitate the soundness
property the following restrictions are enforced:

• There is one start place with outgoing arcs and one end place with incoming
arcs.

• All transitions and places in the workflow should be along the path from start
place to the end place.

• A transition must have at least one input and out place connected. Therefore
all transitions and places need to be connected.

• Each transition must have at least one guarded command that evaluates to
true. Note: having explicit else guard is, in general, good but not mandatory.
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Arc annotations are used as a reference to the incoming and outgoing places
via transitions.

Once the Petri Net model satisfies all conditions, the validation process is successful.
Furthermore, to validate and verify other properties other Petri Net tools such as
YAWL or CPN tools can be used. Finally, after the PN model is validated and
verified, the smart contract generation step (icon generate code in the GUI) is
enabled.

12.1.4 Petri Net to Smart Contract Translation Engine

Petri Net to Smart Contract Translation Engine helps to complete the final step
of the multi-step process, i.e., to generate smart contract generation from the Petri
Net workflows. This step is performed by the smart contract translation Engine
that takes the PNML extended with guarded commands as an input and performs
a translation of the Petri Net workflow into the smart contract code. In the current
version of our tool, only translation to Solidity code is implemented but the engine
is extendable, thus allowing us to translate to other smart contract types such as
Hyperledger Fabric’s chaincode.

The proposed framework takes an approach of mapping places, transitions, and
guarded commands into smart contract code. A complete PN workflow is trans-
lated into a contract consisting of global variables representing places, functions
that directly implement the execution logic of the transitions. The main execu-
tion function defines the procedure that is modeled by the Petri Net based on the
conditioned executions of the state variables of places.

The places, oracles, and tokens are associated with the globally accessible informa-
tion where they are translated into a pair of global variables representing a value
and a state. The state variable represents whether the token was consumed from a
place or not. If the token was consumed, the place is considered as disabled.

Each Place of PN when translated into a SC code is represented with the data
structure:

• a struct will hold the value of tokens which can be of the specific type (i.e.
bool, string, uint).

• a struct will hold the enabled or consumed state of the bool type.

A transition of a PN workflow is written using the guarded command language
as proposed in [150], and each transition is translated to separate functions. De-
coupling the main code from the functionality gives us several advantages such as
re-usability, efficient analysis of functionality by testing a small piece of the code
and easier modeling of the condition statements due to the use of the guarded com-
mands. We map the guarded command language to the smart contract language’s
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logical and condition evaluation features such as Boolean and algebraic expressions
and assignments.

The output of the function is mapped (or assigned) to the input place of next
transition, and that can be achieved in two different ways:

• Approach (i): the main code invokes a function and assigns the return value
(token) of the function to a variable representing the input place of the next
transition.

• Approach (ii): builds on the premise that every transition of the PN can
access only the places to which it is connected. The state of places is changed
through assignments inside the function. In this approach, there is no need
to return the results of the function to the main function.

The proposed framework implements a second approach. As the state of the place
is changed from inside the function representing the transition, the translation
engine ensures that the global variables representing tokens are not reused inside
the functions to hold temporary states. The internal operations of a function first
copy the global variable to a local variable and only if the expressions are valid,
the global variable value is updated preserving the atomicity property. Therefore,
we avoid any inconsistencies in the state of the same places.

In both approaches, we need a lock mechanism for writing/reading the value written
to a place variable. To avoid race conditions that can erase a value from a place
before it is being consumed, we propose to use mechanisms used in traditional
databases, i.e., lock and release before writing and reading a value from such special
places which are realized through the enabled and consumed state variable of the
place.

Once the Petri Net is translated into a smart contract, a workflow expert reviews
the generated SC code and publishes it in the blockchain.

12.1.5 Advantages of our Petri Nets based Secure Smart
Contract Generation Framework

Our Petri Net workflows can be seen as high-level smart contracts that are amicable
to formal verification, i.e., it is possible to check the workflow specific properties
such as deadlock and workflow soundness properties. This supports avoiding such
potential errors during the modeling phase of the workflow. Thus, translating val-
idated and verified Petri Net models into a Solidity code will avoid those errors,
therefore the generated smart contract template is considered secure and will pro-
tect the process integrity of the business logic. However, if the smart contract
language has a language or platform specific problems or business logic errors then
those problems will still exist in the generated smart contract. This holds true as
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well for the scalability of blockchains. The process of modeling and generating smart
contracts through the Petri Nets based Secure Smart Contract Generation Frame-
work does not have an influence on the scalability characteristics of the blockchain
platform.

In particular, the advantages of using our framework are:

• When domain specialists model the workflows using our PN based frame-
work then this will minimize the chances of business logic errors during the
modeling phase

• Workflow verification with the standard Petri Net tools can help to identify
errors and prevent them from appearing in the smart contract.

• Simulation of PN workflow using the token-game at the modeling phase helps
to understand the workflow intuitively before generating a smart contract.

• Platform independent modeling helps smart contract developers to design
and deploy contracts in different blockchain platforms quickly by focusing on
the modeling of business logic and not on the development process or on the
programming languages.

• Smart contract generation without program development knowledge. This
feature particularly helps stakeholders without programming or smart con-
tract knowledge.
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WFAC Framework and
Implementation

The chapter presents the WFAC framework, implementation and a demo use case
to showcase the prototype implementation.

13.1 WorkflowAware Access Control (WFAC)
Framework

In this section, this thesis describes the architecture of the WFAC framework. This
thesis has developed a WFAC framework with different modular components. First,
the complete WFAC phases and architecture are described; second, detailed archi-
tecture description of each component involved in different phases is presented. The
requirements presented in the use cases earlier are taken into consideration when
designing the components of the framework. A prototype of the developed WFAC
framework is implemented by this thesis. This chapter presents the architecture
and insights to the implementation details whenever necessary.

Different phases involved in the WFAC procedure is shown in Fig. 13.1, they are:

1. Negotiation Phase: involves the process where the stakeholders, for example,
business managers sit and negotiate the terms and conditions required for a
specific process.

2. Activity Diagram: in this phase, the process activities are drawn in the form
of a SysML activity diagram - this step introduces user-friendliness.

3. Approval Phase: the SysML activity diagram is approved by the involved
stakeholders, if further improvements are necessary, they are added.
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Figure 13.1: Different phases involved in WFAC

4. Petri Net Workflow Creation Phase: the SysML activity diagram is used as
the reference to create the Petri Net workflows. In addition, these SysML
could also be translated into Petri Net workflows using available tools and
approaches.

5. Workflow Validation Phase: the Petri Net workflows can be validated using
semi-automated tools that check workflow properties such as soundness and
boundness. During this phase, several other steps such as who is authorized to
execute the workflow, and other workflow Application Programming Interface
(API) interfaces are developed and integrated, and also validated.

6. Workflow Publication Phase: after validation, the Petri Net workflows are
published in a commonly accessible platform like a store, this thesis refers
to it as a workflow store. For accountability and confidentiality purposes, a
hash pointer of the workflow can also be published in a blockchain.

7. Workflow Execution Phase: this is the final phase of to use and enforce the
WFAC procedure. It is important to ensure that the handheld capable of
running the workflow application (capable of executing Petri Net workflows)
is secure enough such that the workflow participant is not able to manipulate
the workflow states or tokens to skip some steps of the workflow.

The WFAC framework when deployed shows how the workflow specified via Petri
Nets can be executed and enforced.

13.1.1 WFAC Architecture

This thesis has developed the WFAC, and from the perspective of a resource owner
it is shown in Fig. 13.2 which consists of the following five frameworks to support
different phases presented in the previous section:
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Figure 13.2: Workflow-Aware Access Control Architecture

• Resource servers: a resource server may have one or more resources that be-
long to a resource owner who wants to protect it. Several resource servers are
usually involved in a distributed IoT use case where more than one resource
owners are involved.

• Petri Net Visual Modeling tool: each resource owner wants to protect his
own confidentiality and integrity goals, therefore, this thesis has developed a
user friendly Petri Net workflow specification tool, also known as the visual
modeling tool. This tool produces a Petri Net workflow.

• Authorization Server: a traditional OAuth server is extended to have work-
flow user management, and WFAC workflow specific features such as process-
ing receipt tokens are integrated with it.

• Workflow Store: after Petri Net workflows are designed and validated, they
are published in a workflow store for workflow participants to access. This
workflow store ensures trust for the workflow participants that the workflows
belong to the resource owner because they are published in resource owner
approved workflow stores.

• Workflow Application: the application that is used to execute the Petri Net
workflows, it is developed by the resource owner using secure development
practices (SDL), it includes Petri Net workflow engine and workflow specific
APIs that help to interact with other services and business logic.

All the above mentioned services and applications are owned by the resource owners
and therefore are considered trusted.
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Actors

The two main actors involved in the WFAC are the resource owners and the work-
flow participants.

1. Resource Owners

The RO is typically the owner of the resources i.e. RS therefore, RO is
responsible for designing, creating, or specifying, and registering the Workflow
(WF) before it can be used by the workflow participants.

Some of the requirements of the resource owners are:

• Each RO should be able to enforce workflow-aware access control re-
strictions on workflow participants accessing their RS.

• RO can design their own workflows in collaboration with other resource
owners.

• RO can register and publish workflows in a Workflow store (WF-Store)
and allow workflow participants to download workflows from it.

• RO can register workflow participants, set permissions, and allow the
workflow participants to execute their workflows. The authorization
server framework supports and integrates this feature.

• WP must only get access to resources by properly executing the work-
flow, not by bypassing the workflow or other means.

2. Workflow Participants

The WPs are the entities that accept the workflow issued by the RO to access
the R of RS. Some of the requirement of authorized WP are the following:

• WP should be able to download the Workflow Application (WF-App)
and download the necessary workflow from the WF-Store, and finally,
execute the workflows.

• WP should be able to recover from error conditions.

Resource Server

In Fig. 13.3, the general architecture of a typical RS is shown. A RS contains one
or more Resources (R). RSs can be constrained, therefore, they support only the
minimum functionality such as validating access control tokens encoded as Java
Web Token (JWT) or even precise Concise Binary Object Representation (CBOR)
encoded CWT. Resource Servers may also produce and issue signed JWT or CWT
tokens with predefined dynamic information.
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Figure 13.3: Resource Server - Architecture

In addition, to ensure that the workflow actions are committed by a workflow
participant, the resource servers produce and issue signed receipt tokens - with
some details encoded about the workflow participant, client device (if managed
handheld), workflow action, issuer. Also, to access some resources, a resource
server can be configured such it must check additional receipt tokens from previous
workflow steps from the workflow participant or his/her client device in addition
to the access token acquired from the authorization server.

Petri Net Workflow Generation

In Fig. 13.4, the general architecture of Petri Net visual modeler and workflow
generation architecture is shown. The RO can design and specify the Petri Net
workflows using the Petri Net visual modeler tool, the tool can export the Petri
Net workflows into an inter-exchangeable PNML format. This PNML file can be
imported and executed in the WF-App.

The author of the Petri Net workflow is responsible for verifying the correctness of
the workflow’s application or the process itself. The Petri Net (PN) engine assists
the authors while creating the Workflow in terms of simulating and verifying Petri
Net properties. The PN engine simulates the workflow after saving and provides
a comprehensive report to the author about potential problems such as deadlocks,
etc. via a notification panel. This feature minimizes the errors while creating the
workflow and provides a detailed analysis when the workflow is completed.

Workflow expert: the author requests to publish the PN workflow through a process.
The objective of the workflow expert is to have “Quality Control”. A trusted entity
(a workflow expert) checks whether the workflow is designed properly and represents
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the process defined. Additionally, the workflow expert may use automated tools to
check whether the contract follows standard guidelines or not.

Even when the properties of the Petri Nets satisfy, the workflow could perform
unnecessary steps not related to the goal of the process. So far, the best process
to solve this human problem is to use the four-eyes principle [163, 164]. The four-
eyes principle means that a certain activity, i.e., a decision, transaction, etc., must
be approved by at least two people with expertise. Therefore, before publishing
the contract, a workflow expert analyzes the process or activity requirements, and
verifies whether the designed workflow does the same as described.

Workflow Store

The WF-Store acts as a distributed database of workflows published by different
resource owners (ROs). The architecture of WF-Store is shown in Fig. 13.5. The
workflow participants download the workflow from the workflow store and execute
them. Only the resource owner can publish a workflow in the WF-Store, and
this service could be similar to the traditional Smartphone application store, for
example, the android play store. The resource owner provides necessary workflow
attributes while publishing the workflow, the store creates a unique identifier for
each workflow. This unique identifier can be used as a reference when the resource
owner instructs the workflow participants to execute the workflow.

Example:

One example idea behind the workflow store is the following: for instance,
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Figure 13.5: Workflow Store Architecture

assume that there is a product (resource server), and the manufacturer (the re-
source owner) wants to enforce the customers (workflow participants) to obey a
workflow for using their product devices. The workflow store provides the plat-
form for the customers (the workflow participants) to download the workflow
and start executing it with a generic workflow application.

Authorization Server

The AS performs authorization decisions such as whether to grant a short-lived
bearer access token to the Workflow Participant to access a particular resource while
executing a workflow. In Fig. 13.6, the general architecture of AS is shown. How the
authorization server authenticates the workflow participant or his/her client device
is out of the scope of this thesis. Once the resource server successfully authenticates,
he/she can register workflow by pointing towards the workflow identifier published
in the workflow store, and manage which workflow participants should be allowed
to get access tokens for which workflow. In addition, the resource owner specifies
the scopes required to access resources, and receipt tokens that must be validated
for each resource.

The main authorization decisions made by the AS specific to workflow-aware access
control are the following:

• Is the WP authorized to execute the WF or not.

• Are the client-ID and client-secret provided by the WF-App is valid and
sufficient to grant access to requested scopes.
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• Does the access request for a particular resource need additional history or
receipt tokens or not - this is used to prove that a particular workflow action
is completed by the workflow participant.

1. Revoking Workflow Rights

Revoking a workflow participant to execute a workflow is an important re-
quirement for a resource owner. The resource owner is allowed to delete the
registered client to execute a particular workflow. This will prevent AS from
issuing further new tokens to that particular client. However, already issued
short-lived bearer tokens cannot be revoked - as the name suggests they are
short-lived so it cannot be used after the expiry time.

Workflow Application

The architecture of WF-App is presented in Fig. 13.7. The WF-App is developed
and managed by the resource owner. The workflow application’s main components
are

• Workflow Management & Execution GUI : this helps the actor workflow par-
ticipant to import workflows and start and stop executing it.

• Authentication Service: this service allows the workflow participant’s client
to authenticate with the authorization server, and download the necessary
credentials to execute the workflow locally.

• REST APIs: interacts with the GUI and also with external resources and
services, for example, with the resource servers and authorization servers.
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Figure 13.7: Workflow Application - Architecture

• Workflow APIs: workflow specific functions that are required to be used
within the Petri Network workflow specification is provided via these inbuilt
APIs. This component is modular such that external workflow specific func-
tions can be loaded easily.

• Petri Net APIs and Engine: Petri Net workflow specification is actually ex-
ecuted with a Petri Net Engine and to interact with it, the Petri Net APIs
are used.

So far, this thesis described the architectural aspects of the WFAC. In the next
section, this thesis describes some aspects of the prototype implementation.

13.1.2 WFAC Framework Usage

This section presents how one can use the WFAC framework by presenting the flow
of actions.

The following description corresponds to Fig. 13.8 describing the flow of actions of
how one can use the proposed WFAC framework.

• 1(a): first, the Resource Owner (RO) designs the required workflow with the
activity diagram of SysML, then the activity diagram is used to create the
Petri Net Workflow using the visual modeler tool presented in Sec. 12.1.1.
As described earlier, it is important to model the workflow to handle error-
conditions. This process also includes the validation of the specified Petri
Net workflow both using automated tools and expert review.
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• 1(b): RO then publishes the validated workflow in the workflow store.

• 1(c): RO registers the workflow with the Authorization Server (AS).

• 2: RO creates WP and assigns the workflow related permissions to the reg-
istered client. The AS creates a unique ID and secret for each registered
workflow to a client. In OAuth terms, the unique-ID and secret are called
the client-id and client-secret.

• 3(a/b): RO configures the resource servers and the AS with scopes, receipts
that should be checked for each particular resource. In addition, RS is con-
figured with information that should be inserted into the receipt token which
will be issued to the client after successful workflow action completion.

• 3(c): during this phase, the RO also decides the access control permissions
needed for each workflow step that the Workflow Participant (WP) or a user
needs to execute the WF.

• 4(a/b): WP looks up and downloads the registered workflow.

• 5:WP imports the downloaded workflow or by simply providing the URL of
the workflow.

• 6(a) The workflow participant successfully authenticates to an authorization
server, as a result 6(b) a client-id and client-secret and other relevant tokens
are pushed into the application. This connection is an end-to-end connection
with the Workflow Application (WF-App) therefore, the workflow participant
is not able to see this information. This secret material is later used to identify
the client and the requests originating from the workflow application.

• 7(a/b): Furthermore, based on the implementation and use case specific re-
quirements several access tokens that might be required to execute a workflow
can also be pushed to the workflow device after successful authentication and
authorization.

• 8(a): WP via the WF-App performs an access request to the resource and
presents the token received from the AS

• 8(b): if the presented token is valid, the RS returns the valid resource with
an additional receipt token signed by the RS - this receipt token proves that
the WP has performed a particular workflow action

• 9(a): WP via the WF-App performs an access request to the resource and
presents the token received from the AS + the receipt token received from
the resource server 1 - in the previous step.

• 9(b): if the presented token and the receipt token are valid, then the Resource
Server (RS) returns the valid resource. Based on the configuration, resource
server 2 may also issue an additional receipt token signed by the RS2.
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In addition, AS and RS can publish important workflow events into an immutable
database, i.e., accountability database shown in Fig. 13.8. Depending on the use
case, the WP with the WF-App credentials it receives from the AS, is able to
publish workflow events e.g., in case of an error or usage or error-recovery tokens.

13.2 WFAC Implementation

The goal of the prototype is to demonstrate the feasibility of the WFAC frame-
work. Therefore, the design choices that include software platform, frameworks,
programming language, etc. were decided only to demonstrate the feasibility, and
not to make a production-ready software application.

This thesis assumes that the communication interface between the WF-App, au-
thorization servers, and other services are protected by standard security protocols
such as TLS. DTLS together with the PAT profile is recommended to communicate
with the constrained resource servers. Note: PAT profile can also be used without
a DTLS communication. This thesis also assumes that the WFAC applications are
developed using best security practices. The exploitation of implementation bugs
or the underlying operating system to gain access to internal application services
and the resulting attacks are not considered as part of this implementation.

As part of the WFAC framework implementation, the following web applications
are developed:

• (a) An Authorization server web application with its functionalities described
in Sec. 13.1.1. Each resource owner may have their own AS.

• (b) A workflow management application that integrates both the Petri Net
visual modeler as presented in Sec. 12.1 and the workflow store (WF-Store)
application as described in Sec. 13.1.1. Each resource owner may have their
own WF-Store.

• (c) A resource server application with multiple protected resources. In the
developed prototype, one can simulate multiple resources.

• (d) The workflow web/mobile application. The workflow application is critical
for the WFAC framework, therefore it is explained in detail in the following
Sec. 13.2.

The aforementioned web applications were developed using Python web application
framework “FLASK” and several other python libraries. Node-js was used for
developing the Petri Nets visual modeler.
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13.2.1 Demo Use Case

Consider a simple use case where a building owner delegates installation or main-
tenance work to a contracting company. The RFC 7744 [165], provides a summary
of authorization problems that emerge during the device life-cycle (commissioning,
maintenance, re-commissioning, decommissioning). In addition to the authoriza-
tion problems, the building owners may wish to ensure that only products with
a certain provenance or quality are installed and that the process complies with
the standard operating procedures. The building owner may also wish that the
contractor obeys other conditions written on a contract. This use case is described
in detail in Sec. 15.1.

Different phases involved in the WFAC framework are described in Fig. 13.1. As
the use case is identified, a requirement elicitation is conducted with relevant stake-
holders, with which requirements are identified. A business manager or software
engineer might use the traditional UML based modeling approach to model the first
activity diagrams. This thesis adopts the SysML activity diagram and recommends
it to model the activity diagram. Next, this activity diagram can be exported to a
Petri Net workflow. Next, a Petri Net simulator is used to check properties of the
exported Petri Net Workflow such as deadlocks, etc. After that, a Petri Net library
(e.g., see Sec. 13.2.2) can be used for implementing Petri Net functionalities and
enforce the conditions written within them. After this, a workflow expert should
check if the Petri Net workflow and the transition contract conditions represent
the process defined. Now, this verified PN workflow is published in a WF-Store
or implemented as smart contracts and then published into a distributed database
with appropriate access control such that only authorized persons can access the
PN workflow.Now, an entity that needs to execute the process should download the
corresponding PN workflow and the workflow execution application.

The workflow (WF) is created and signed by the building owner. Next, the WF
is provided to the contractor. The contractor uses his handheld device as shown
in Fig. 13.9 to execute the WF. The user or workflow participant executing the
workflow needs to authenticate via the App (i.e., to prove that the user can execute
the workflow) to the Authorization server. After successful authentication, the
WF-App receives the client-id and client-secret from AS which is used for further
requests to AS.

The building automation devices use the standard ACE-OAuth [47] protocol to
validate the token that it receives, and if the tokens are valid, then access to a
resource is granted otherwise not. If the IoT device receives a request that it
is unable to process, it may also delegate this request to an authorization server
or other trusted entity. The IoT devices can evaluate the validity of the proof-of-
possession tokens (i.e., whether this token is constructed based on the shared secret
or not) and can respond appropriately to the client device.
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Capability 
Tokens

Deny Access

Delegate

Figure 13.9: Building Automation - Petri Net Workflow Enforcement - access denied
or granted based on the workflow specification.

13.2.2 Petri Nets Library

The Python library called “SNAKES”, presented in [166] by Pommereau, is used
to execute the Petri Nets workflows written in PNML. The SNAKES library is
extended to support different types of Petri Net places such as oracles and open
places and to evaluate transitions with external conditions and produce the neces-
sary tokens that will be required for subsequent transitions. In the current imple-
mentation, the transition contracts are expressed with limited features of SNAKES
library’s arc notations, expressions that can use native python functions to evalu-
ate input tokens and produce required tokens. Additional XML tags to represent
workflow and its rules, i.e., expressions and conditions written in a Transition, to-
ken types, open Petri Net places, and how they could interact or interface with
dynamic or sub-workflows are needed.

Assume that different stakeholders are providing their services as Representational
State Transfer (REST) based web services through the WFAC services such as WF-
Store and supported via their authorization servers. The workflows are created by
workflow experts, approved by the stakeholders, and made available via their own
workflow repository WF-Store. A participant can download the WF-App and the
required workflow from the respective resource owner’s WF-Store repository, and
then he may start executing the workflow. The WF-App front-end provides the
communication interface between different external services and the RS. standard
security protocols are used to protect the communication channel. How participants
authenticate with the Authorization server is out of scope here. The enforcement
of the Petri Net workflows is integrated with the WF-App.
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(    )

1

2 3

Figure 13.10: The demo building maintenance use case that shows 3 steps, after
completing each step, the workflow participant receives a receipt to-
ken. In this figure, one could see that the tokens are represented in
different shapes e.g., circle, square, and triangle. The collected tokens
are further used in the next request.

13.2.3 Workflow Application

The workflow application is built to execute workflows specified as Petri Nets, and
it can handle oracle, timeout transitions, and other features introduced in this work.
Weber et al., [167] introduced PNML which is based on XML, and in this work,
we use PNML to express the Petri Net workflows. The application is created by
the resource owner RO therefore, it is trusted and is allowed to run in a certified
device. The workflows being executed within the WF-App is recommended to run
on a certified device that contains a protected execution environment such as the
Trusted Execution Environment (TEE) to do some sensitive operation involving
the secret material. Thus, we assume that the participants are not able to extract
or modify any secrets from the workflow. This certification ensures that the secrets
enclosed within the WF-App cannot be easily extracted by the CL. In Fig. 13.7,
the general architecture of WF-App is shown.

The implementation uses the ACE-OAuth protocol to create JWT tokens [168].
These proof-of-possession tokens are used by the workflow participant to prove to
the resource server that the workflow participant is the valid entity to access the
resources. The workflows are executed i.e., transitions and tokens are precisely
processed in the Trusted Execution Environment (TEE) of the handheld. We as-
sume that the participants are not able to extract or modify any secrets from the
workflow.

The Fig. 13.10 is showing the demo use case, where a workflow participant must
execute the workflow actions to gather the receipt tokens, with which the access to
a final resource (entrance to a room with a smart door) is granted.

The workflow application controls the workflow execution step such as the following:

• Whether the workflow (WF) is executed properly or not?
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Figure 13.11: The prototype of the WFAC workflow application installed on an
Android smartphone.

– Does the WP need to access this a resource R in RS to execute the next
step in the WF?

– Does the response from previous WF step is correct or not by validating
the receipt tokens? This information is used to enable the next state in
the WF. For example, the response from the resource request from a RS
may include a signed JWT with information such as workflow execution
state, next accessible resources, etc.

• The client-id and client-secret information are used by the WF-App to au-
thenticate itself to the AS; in addition, when requesting access tokens the
WF-App will also request the required scopes. Note: how this client-id and
client-secret is provided to the WF-App is out of the scope of this thesis.

The prototype of a workflow application typically installed in a handheld or a
mobile device (e.g., an Android smartphone) is shown in Fig. 13.11. This prototype
WF-App is developed as part of this thesis to evaluate the the WFAC framework.
However, this application can also run as a web application. Python application
development framework ‘Flask’ is used to build this workflow application. This
WF-App is used by the workflow participant to execute the workflow and access
protected resources.

Figure 13.11 shows four views of the workflow application installed in the form
of a mobile application (e.g., in Android smartphone) in a handheld. The first
view of Fig. 13.11 shows the login page of WF-App using which the user presents
the credentials to the AS. If the user is allowed to execute the workflow, then
the AS presents appropriate workflow application credentials (e.g., OAuth client-
credentials with limited scopes) to execute the workflow. The credentials are trans-
ported via TLS and stored within the application in such a way that they are not
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accessed or tampered by the WP or other applications installed in the handheld.
The second view from the left of Fig. 13.11 shows that the user sag logged in,
therefore, can import or delete existing workflows. The third view from the left of
Fig. 13.11 shows the current status of DoorWF workflow for the user sag. Also,
one can notice that the agreement is enabled (activated) because sag and spie both
have agreed to the Petri Net workflow by presenting a ‘True’ token in the appropri-
ate places. The WF-App also shows options (via show buttons) to view transitions
and places, recover from errors, and view the workflow state as the Petri Nets. The
WF-App application includes an option for the users to insert tokens in authorized
places, for instance, in the fourth view from left in Fig. 13.11, as sag user is logged
in, the user is able to insert tokens into place sag. This prototype version also
includes development only features such as reset workflow. Additionally, the work-
flow application also allows the user to see the workflow state in the form of Petri
Net workflows.
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Chapter 14

Security Analysis of
WorkflowAware Access Control
Framework

This chapter evaluates the security of the proposed WFAC framework. To per-
form this security analysis, this thesis has used both the practical approach in Sec.
14.1 and Sec. 14.2 and the theoretical approach in Sec. 14.3 respectively. First,
the assumptions considered when developing the WFAC framework are presented.
Second, the results of the WFAC framework’s threat model and web security anal-
ysis are discussed. Third, attacker models of WFAC are discussed. Finally, the
countermeasures and recommendations are presented to improve the security of
WFAC.

This thesis assumes that the resource owner and associated entities are trusted and
secure. Trusted entities are assumed not to collude with an adversary or attack the
system themselves. The WFAC frameworks and its applications deployed on the
servers are trusted. Therefore, the authorization server, workflow-store, workflow
modeling systems, workflow experts, and their administrators with special privileges
are also trusted.

In the performed security analysis, common security issues such as code bugs and
vulnerabilities that exist in the different software or operating systems are not
considered. It is assumed that appropriate security measures are taken during
software development.

14.1 Threat Modeling

This thesis has used Microsoft’s threat modeling tool (see [169]) to analyze potential
threats present in the WFAC framework. Microsoft’s secure development lifecycle
(SDL) is considered the industry’s best practice for secure software development.
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Figure 14.1: Microsoft Threat Modeling Tool - WFAC architecture threat model
diagram

One of the twelve recommended security practices of SDL (see [170]) is threat mod-
eling. Microsoft’s threat modeling focuses on finding and thwarting threats related
to Spoofing, Tampering, Repudiation, Information Disclosure, Denial-of-Service,
and Elevation of Privilege (STRIDE) [171]). STRIDE is a proven and effective
approach to detect different threats (see [172, 173]) that exist in common software
applications.

Figure 14.1 shows the WFAC deployment architecture drawn and analyzed using
Microsoft’s Threat Modeling tool. The tool provides insight into potential threats
and also recommendations to avoid those threats.

The tool generates a generic report which states the specific problem and the coun-
termeasures that can be applied to solve the problem. The tool also highlights the
problem by showing only a snapshot of the particular part of the complete WFAC
architecture threat model diagram. For example, in Fig. 14.2 the tool highlights the
Structured Query Language (SQL) injection vulnerability between a SQL database
and the authorization server.

As a result, in total, the tool reported 149 possible threats that can be classified into
one of the STRIDE categories, i.e., classified into 19 in Spoofing, 20 in Tampering,
24 in Repudiation, 17 in Information Disclosure, 40 in Denial-of-Service, and 29
in Elevation of Privileges Fig. 14.3 shows the number of threats. The identified
threats do not mean that they exist in the developed WFAC framework, rather it
shows that these threats exist, and proper measures must be taken to resolve them.
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Figure 14.2: Microsoft Threat Modeling Tool highlighting SQL injection vulnera-
bility present between the Authorization Server and the SQL database,
for example, with credentials

Most of the spoofing related threats can be resolved by implementing standard
source and destination authentication mechanisms for properly identifying pro-
cesses, storage, or databases. For the mentioned purposes, Public Key Infrastruc-
ture (PKI) based certificate authentication methods are usually used. Similarly,
tampering related threats can be resolved by using anti-replay mechanisms, sani-
tizing input and output data, integrity measures, logging, using proper pointer or
memory access management, etc. To fix repudiation related threats issues, account-
ability measures that include logging of actions committed should be integrated. To
resolve information disclosure related threats proper access control and accountabil-
ity measures must be used. Similarly, data replication, load balancers, replicated
servers, crash detection, auto start processes are some of the passive approaches
that could be used to tackle Denial-of-Service (DoS) related threats. Stopping a
threat before it occurs is an alternative and active approach to restrict Denial-of-
Service (DoS) attacks, in such a situation, a legitimate user may be denied access to
services. The least privilege mechanism must for enforced for processes and threads
to perform updates and patches to tackle privilege escalation related attacks. Dis-
abling all unnecessary capabilities and features will prevent some threats.

14.2 Web Security Analysis

This thesis has developed a WFAC framework prototype that includes different
web applications: (a) an authorization server, (b) workflow application, (c) re-
source server, and (d) a workflow design and specification application based on
Petri Nets. The workflow application is also ported to a handheld, for instance,
an Android application. This thesis has used one of the popular web application
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Figure 14.3: Number of different STRIDE threats identified by the Microsoft Threat
Modeling tool on the WFAC threat model diagram
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Table 14.1: Google Web Security Scanner Results of WFAC framework performed
in December 2019.

Application URLs tested Duration Vulnerabilities Found
Authorization Server 318 29 min 32 sec 0
Workflow Application 457 1 hr 37 min 0
Workflow Management 191 15 min 42 sec 0
Resource Server 66 8 min 23 sec 0

frameworks based on a python programming language called “Flask” 1 to develop
the aforementioned web applications.

The OWASP foundation publishes the top 10 vulnerabilities found on web appli-
cation security 2 to create awareness amount the developer’s community. To test
whether the developed web applications contain known web application security
vulnerabilities this thesis has used Google Cloud’s state-of-the-art Web Security
Scanner 3 to automatically test the known vulnerabilities as follows:

• Cross-site scripting (XSS)

• Flash injection

• Mixed-content

• Clear text passwords

• Usage of insecure JavaScript libraries

The Google Web Security scanner is not intended to replace manual code inspec-
tion or other types of evaluation, and it does not guarantee that the applications
are free of any vulnerabilities. Table 14.1 shows the scan results performed on
5th December 2019 of four different web applications. The Google Web Security
Scanner was provided with login credentials for applications that have a login inter-
face. Therefore, the internal state changes of the web applications were also tested.
Note: as Google’s Web Security Scanner is constantly improving, the scan results
may differ from the time this scan was performed.

This thesis does not consider other types of testing approaches such as application
testing such as blackbox, whitebox, and penetration tests, or the code analysis
techniques as Static vs. Dynamic Analysis of the WFAC, which are also popular
methods to detect and fix vulnerable bugs in software applications used. However,
as the intention of this thesis is to develop a proof-of-concept and not a produc-
tion ready software application. Therefore, this thesis has not performed such
in-depth production quality software testing. However, when this WFAC is used in

1https://www.fullstackpython.com/flask.html
2https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
3https://cloud.google.com/security-scanner/docs/overview
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production, the thesis recommends professional software development and testing
approaches to reduce bugs or other vulnerabilities.

14.3 Attackers

An attacker can be classified based on his capabilities, motivation, skills, level of
access, and intentions. A generic attacker taxonomy is presented in Fig. 14.4. The
taxonomy provides a broad overview and helps to select the attacker models for
the WFAC.

14.3.1 Attacker Models

The Dolev-Yao attacker model is considered to be one of the strongest attacker
models for analyzing the cryptographic protocols, in particular, it considers an
active network attacker who impersonates to be a legitimate user altering the com-
munication for his/her own benefit (see [174]), but for the purposes to analyze the
proposed WFAC system more than a network attacker is required. This thesis has
chosen three different attacker models from the taxonomy presented earlier.

In each attacker model, the assumptions of the WFAC are the same, and only the
level of access the attacker has to the components of WFAC differs. This thesis
assumes that the attacker has limited resources, i.e., the attacker is not state-
sponsored. An insider such as the administrator who has extreme capabilities is
not considered an attacker in the chosen attacker models. This thesis assumes the
resource owners and associated entities as trusted. This thesis assumes that the
workflow participants executing the workflow via the trusted workflow application
may act maliciously. Therefore, the main focus of the chosen attacker models is to
investigate how a malicious workflow participant may attack the overall system.

The assumptions presented earlier are used to generalize the attacker’s skills, ca-
pability, attack type, and motivation. In the following, they are described briefly:

• skills: professional, i.e., with above average skills to attack the WF-App or
the IoT devices.

• capability: a lone attacker or a small dedicated team.

• attack type: both passive attacks such as monitoring and active attack such
as tampering or altering the input data to devices and services

• motivation: usually financial, but in most cases, the motivation depends on
individual use cases of the workflow and the resources involved.
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Attacker

Skills MotivationAttack Type CapabilitiesLevel of
Access

InsiderOutsider

Script Kiddie Skilled
Hacker Researcher Hobby / Fun

Active Passive

Reputation Financial Social Cause

Lone Attacker Dedicated
Team Social Group

State
SponsoredProfessional

Figure 14.4: A Generic Attacker Taxonomy
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The three chosen attacker models are differentiated based on the level of access the
attacker has to the WFAC or its components.

• Attacker-1 (A1) has no access to the workflow application, handhelds, or any
workflow information. Therefore, the attacker can, at most, access the IoT
devices or services exposed physically or virtually via the Internet, respec-
tively.

• Attacker-2 (A2) has partial access to the workflow execution, i.e., access to
the handhelds with the workflow information but does not have any workflow
related credentials. One can assume this scenario with the stolen handheld.

• Attacker-2 (A3) has complete access to the handheld, workflow application,
and also holds legitimate credentials to execute a workflow. You may think
this attacker as a legitimate workflow participant who acts maliciously. This
attacker is the most powerful out of the chosen three attackers.

Now, this thesis discusses the attack scenarios with the chosen attackers.

Irrespective of how good the protection mechanisms are, the attacker will try to
find a way to compromise the system until he/she is successful - this is based on
the fact that no computer system is 100% secure. This is one of the reasons why
an attacker with unlimited resources is not considered.

14.3.2 Attacker1

The attacker-1 has three possibilities to attack the IoT devices and services pro-
tected with the WFAC framework.

• First, the attacker can brute force to get access to the device via the Internet,
but as the devices are protected using our WFAC, the attacker cannot possess
the workflow related tokens, in particular, receipt tokens without executing
the workflow. Therefore, this attack cannot succeed without having workflow
credentials.

• Second, the attacker may use a vulnerability to gain access via the Internet
or with physical access to one of the IoT devices. Assume that the attacker
has gained access to that particular IoT. Even in this scenario, the attacker
cannot perform the lateral movement to gain access to other internal IoT
devices because the attacker does not have workflow knowledge or the ability
to execute the workflow.

• Third, the attacker can eavesdrop on non-encrypted channels, which will allow
the attacker to capture short-lived tokens and replay them to resource servers
as authentic requests. This attack affects constrained IoT devices that may
not have the capability to encrypt the communication channels. But even
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those devices will be using the PAT profile for OAuth 2.0. - introduced in
this thesis for protecting constrained devices, as well as to protect the identity
of the workflow participant. PAT uses proof-of-possession key to encrypt the
responses. Therefore, the attacker may not be able to read the response from
IoT devices. However, this attacker can perform denial-of-service or battery
drain attacks.

14.3.3 Attacker2

This attacker-2 has access to a handheld with the workflow application but does not
have the credentials to access the handheld or the workflow - usually, the workflow
participant needs to authenticate against the authorization server before starting
to execute the workflow, and in return, some temporary workflow credentials are
transferred to the handheld.

This thesis assumes that the workflow application does not have any static or
long-lived workflow related secrets within the handheld. At the time of workflow
execution, a workflow participant has access to the short-lived access tokens, and
receipt tokens. If the attacker is able to break into the handheld and extract some
of those credentials and tokens before they expire, then the attacker can access
some resources for a short amount of time.

As these credentials are temporary, with the help of an authorization server, some
of these credentials can be revoked. Therefore, further retrieval of tokens by the
attacker can be prevented. Also, this problem can be thwarted with the use of hard-
ware and software integrity mechanisms provided by the TEE or Trusted Platform
Module (TPM). For example, if the mobile application detects any unauthorized
changes to the approved handheld models, then the adversary has little chance to
extract any valuable information.

14.3.4 Attacker3

This attacker-3 is the most interesting attacker model who has access to a handheld,
workflow application, credentials to authenticate against the authorization server,
and legitimate access to a workflow. Let us assume that the attacker has access to
Workflow-1 (WF-1). Now, the attacker may try to compromise other IoT devices
or service which are not part of the WF-1, i.e., that the attacker can try to access
devices or resources that belong to Workflow-2 (WF-2), etc. To do this, the attacker
has two options: (a) compromising an IoT device and extract the secrets, and
with those secrets may try to access WF-2 resource; (b) as a legitimate workflow
participant, the attacker can try to misuse the error handling capabilities supported
in WFAC. In the following, we discuss those aspects in detail.
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Compromising an IoT Device

Assume that the attacker has authorized access to workflow-1 (WF-1). Using WF-1,
one can access the following devices a, b1, and c1 in a sequence. Using Workflow-2
(WF-2), one can access the following devices a, b1, and c2. Let us assume that the
attacker wants to access a confidential resource from an unauthorized workflow, in
this case, a resource from device c2 of WF-2.

Goal: the attacker wants to access an unauthorized workflow resource by compro-
mising one of the devices that belong to his authorized workflow.

Assume that the attacker has compromised one of the IoT devices of WF-1 that
bridges the two workflows, for instance, device b1 is compromised and thus with
credentials from b1, the attacker could create a fake receipt token RcpTkn-b1:(for
WF-2) - indicating that previous workflow WF-2 steps have been completed prop-
erly. The receipt token (RcpTkn-b1) alone from device b1 is sufficient to access any
resource in c1 but not sufficient to access any resource in c2 because c2 is configured
to process all previous receipt tokens, i.e., RcpTkn-a1, RcpTkn-b1. This configu-
ration introduces additional overhead for the resource server c2 because it has to
process all additional tokens but provides additional security for the resources. This
configuration decision and the trade-off between security and performance are left
to the resource owners.

In the assumed example case, the attacker has the ability to create fake receipt
tokens from device b1, for example, RcpTkb-b1:(for WF-2) but cannot do the same
for creating RcpTkn-a1:(for WF-2) - because it is not compromised. The attacker’s
request to access a resource from c2 fails in this case because the Rcptkn-a1:(for
WF-1) is issued for completing workflow WF-1, and therefore, cannot be used as
combined with RcpTkn-b1:( for WF-2).

Given the integration of strong accountability measures, such action can be config-
ured to trigger an automatic action against such malicious workflow participants.
The receipt tokens are introduced in the WFAC framework to protect attacks from
such compromised IoT devices.

Misusing Dynamic Workflows

Dynamic workflows are introduced in the proposed system to handle error condi-
tions and exceptions. If the use of dynamic workflows is allowed without proper
accountability and additional access control restrictions, then it could be exploited
by an attacker to bypass the workflow. The attacker should have a valid workflow
execution contract (which could have been stolen from a legitimate client) and con-
vince the administrator to provide a dynamic workflow (e.g., to overcome specific
restrictions made available in the original workflow) to exploit this vulnerability
successfully.
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A general approach to tackle this issue is the following, (a) restrict employees with
privileges to issue dynamic workflows, (b) compulsory training to those privileged
employees to identify misbehaving entities (workflow participants) or social engi-
neering attacks, (c) enforce strong accountability measures to collect information
and cross checking whether the request is legitimate. Also, every action related to
dynamic workflow, prior errors, and exceptions must be properly documented for
auditing purposes. The next version of the workflow may consider the exceptions
that occurred earlier, if they are frequent, then it is usually a good idea to incor-
porate them into the main workflow itself, such that dynamic workflows may not
be invoked frequently.

14.4 Recommendations

It is recommended to follow best security practices and guidelines to avoid common
threats and vulnerabilities. For instance, it is recommended to follow a secure
development life cycle (SDL) that includes threat analysis, secure coding guidelines,
and both hardware and software hardening guidelines. This thesis recommends
that the workflow application be run on devices with hardware integrity protection
mechanisms such as TEE and TPM. The hardware integrity mechanisms check the
integrity of the underlying operating systems and applications, and whenever the
integrity checks fail, appropriate prevention mechanisms such as boot prevention
or data deletion are triggered.
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Use Cases

This chapter presents the concrete use cases that were used to collect the generic
challenges and requirements of emergent IoT applications. The challenges and
requirements helped to build the proposed WFAC framework presented in Part III.
In this section, after describing each use case, the proposed WFAC framework is
evaluated, i.e., by first presenting the SysML activity diagram, then describing the
high-level Petri Net workflow with additional sub-workflows and explaining how
each actor interact and execute the workflows. Finally, how this approach can be
used for generic use cases is discussed. The four use cases presented and evaluated
in this thesis are the following:

1. Building Automation

2. Connected Mobility Lab

3. Car Sharing

4. Supply Chain

Each use case can be slightly different in terms of its challenges, requirements,
owners, resources, IoT devices, and their capabilities, and the involved workflow
participants.

15.1 Building Automation

Modern buildings use building automation systems to control lighting, heating,
ventilation, and physical safety systems within the building. These building au-
tomation systems consist of embedded devices equipped with sensors and actuators
and can collaborate autonomously. For example, the lighting system can adjust the
light intensity and color of a room based on the ambient light available in the room;
the security system can alert the nearest emergency responders or fire-stations in
case of an emergency. In such a scenario, often, it is required to perform software-
updates, quality-control inspection, fix security patches, and upgrade the firmware
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Figure 15.1: SysML Activity Diagram of Building Automation

on the devices. Usually, the building owner delegates the installation or mainte-
nance work to a contracting company. The RFC 7744 [165], provides a summary
of authorization problems that emerge during the device life-cycle (commissioning,
maintenance, recommissioning, decommissioning). In addition to the authorization
problems, building owners may wish to ensure that only products with a certain
provenance or quality are used for installation and that the process complies with
standard operating procedures.

The building owner also wants the contractor to obey the conditions agreed. The
conditions also include some penalty if the contractor fails to satisfy the agreed
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condition. The conditions agreed, including the penalty, are specified with the
proposed Petri Net workflows.

For instance, the building owner

• wants to automatically enforce the conditions agreed with the contractor
including any penalty if agreed conditions are not met,

• wants to track the status of the work in progress remotely,

• wants to configure the installed devices with custom rules such that the newly
installed devices are interoperable with existing systems and devices,

• wants to control authorization permissions given to the contractors enforcing
fine-grained access control, i.e., the least privilege principle,

First, the requirements elicitation is conducted to gather the requirements. Next,
a SysML activity diagram is created as shown in Fig. 15.1. If multiple different
building owners are involved, then the activity diagram is discussed and agreed with
everyone of them. Next, the building owner responsible for creating the workflow,
with the help of workflow experts, creates the Petri Net workflow (WF-BA). The
partial Petri Net workflow is shown in Fig. 15.2. The workflow WF-BA is then
published in a workflow store. The workflow application certified by the building
owner is downloaded and executed by the contractor (workflow participant).

Below, the steps involved in the workflow are explained:

• Once the workflow is published, the workflow participants (contractors) eval-
uate the workflow and decide whether to participate or not. If a contractor is
interested, then he/she signs the token using his/her private key, this signed-
token is placed in the place (CO) in Fig. 15.2.

• Next, let us assume that the building owner selects one of the contractors
based on the provenance and credibility of the contractor. The building
owner uses the mobile application to approve the selected contractor to begin
the work. This event creates a token signed by the building owner in the
place (BO). The token contains information about the chosen contractor and
enables a transition (T1).

• The transition (T1) verifies the tokens in the input places (BO and CO), verify
the signature of the token using pre-configured certificates. If both tokens are
valid, then T1’s transition creates an OAuth-token in place (a). This token
in place (a) permits the contractor to access the devices for maintenance
purposes as defined in the next steps of the workflow. As expected, only one
contractor can be selected, i.e., the T1 places the input tokens of contractors
not chosen in the output place (Xa).
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Figure 15.2: Open PN workflow (WF-BA) of Building Automation

• A valid token in place (a) triggers Transition (T2). T2 verifies token in place
(a). Now, the selected contractor once again confirms by placing a signed
token in place (c). By doing this, he/she binds to the agreed conditions
and begins the work. The transition (T3) requires a token from the selected
contractor and creates proof-of-possession OAuth ACE tokens in places (d1,
d2, and d3). Tokens in d1, d2, and d3 give the contractor access to three
different tasks/services in the devices, for example, d1 token to perform tests,
d2 token to perform firmware updates, and d3 token to configure.

• The Contractor may also delegate one or more tasks to his employees or
subordinates by creating his own dynamic workflow. The tokens of completed
tasks are exchanged to the main workflow using open places pointing to the
transitions expecting the task completion tokens. For example, in Fig. 15.2
task d3’s token is expected by transition T6. Task d3 is split into three sub-
tasks (d3.1, d3.2, and d3.3) and delegated to the subordinates via open place
(op1). After completion, the resulting tokens are given as input tokens to the
transition T6 via the open place (op2).

• Once all the tasks are completed, the transitions (T4, T5, and T6) evaluate
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the input tokens and place three tokens in the place (e). The oracle place
(test) has a valid token if the automated test results are successful. If the
places (e, and test) have valid tokens, then transition (T7) can trigger the
payment for the contractor in place (p). If tests were not successful, a token
in place (Xp) is placed and requires external evaluation.

The contracting company might want to enforce specific conditions by creating dy-
namic workflows on their employees (to handle particular error conditions). The
open places introduced in the main workflow must not change the main objective
of the workflow. To enable this feature, the building owner may allow some transi-
tions (for example, T3 and T6 in Fig. 15.2) to allow open places from authorized
participants. Figure 15.2 shows the owner of the task (the contractor) can create
dynamic workflows for other entities to complete a task or resource that he owns.
In this way, a distributed workflow management system is realized. This use case
shows how one can execute and enforce a workflow in a distributed way.

15.2 Connected Mobility Lab (CML)

The Connected Mobility Lab (CML) is a public funded project that envisioned
integrating the services from different stakeholders – such as mobility, financial, and
IT services – providing a comprehensive mobility solution by seamlessly exchanging
data and analytics (see [175]). The CML has core services such as IT security,
accounting, data management, and identity management that integrate data and
processes from different mobility providers. The CML mobile application (CML
App) assists users (i.e., travelers) to experience the CML mobility solution with an
intuitive user interface. A complete overview of CML is shown in Fig. 15.3.

The users of CML can be private persons or employees of a company that has a
service agreement with the CML. A user may want to use different mobility services
to complete one single journey. In CML, different mobility service providers have
different specifications and implement “equivalent” tasks differently. For example,
validating a ticket or payment is done differently by each mobility service provider.
It is essential to guarantee the process integrity of such processes defined by each
service provider. Therefore, Workflow-Aware (or Workflow-Driven) Access Control
(WFAC) is required with a high-level workflow specification language.

Consider a simple use case: a user might use a car sharing service from his home
to the main train station, then park the car in one of the available parking lots
and take a train to reach the final destination. During the trip, the user must obey
the rules and conditions specified by that particular mobility provider. The CML
mobility service enforces a global workflow specified using our method.

Now, let us consider a more complex business mobility use case scenario: two
companies A and B decide to use the mobility services offered by CML to enforce
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Figure 15.3: The Connected Mobility Lab (CML) offers a comprehensive mobil-
ity service by integrating different mobility service provides, partners
using its core services and CML App.

some public funded project-specific travel restrictions on its employees. The use
case requirements are:

• Every business travel must be approved by the respective managers of partici-
pating companies, and in particular cases, the public funding project manager
approval is also required.

• Special conditions whenever necessary could be inserted by authorized per-
sons (i.e., the Managers)

• Travelers/Users using CML should be able to recover from error conditions,
for instance, if a train or flight is canceled, then rebooking should be possible.

• Reimbursement of travel costs after a successful trip should be automated.

• Actions executed by the users/travelers must be recorded in a distributed
immutable database for accountability.

As the first step, the requirement engineering experts perform the elicitation pro-
cess, i.e., to collect information from the involved stakeholders. The business mobil-
ity process and conditions are defined after consulting with participating companies
(A and B) and the public funding project manager. The collected use case require-
ments are used to create the OMG SysML activity diagram. The open-source
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Figure 15.4: SysML activity diagram of the CML business mobility use case

modeling tool “Modelio”, for example, can be used to create a SysML activity dia-
gram. Figure 15.4 shows the SysML activity diagram of the above mentioned CML
business mobility use case. An employee (e) is able to make a travel request which
can be approved or rejected by his manager (mA). In case of a special request, the
public funded project manager (mP) must also approve. The CML calendar service
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Figure 15.5: Petri Net workflows of the business mobility use case

provides information about the meeting such as location, time, etc. If the trip is
approved, then the employee (i.e., the traveler) may choose the transportation type
(for example, public transport, car sharing, and so on) and get the tickets from the
CML App. Finally, when the trip comes to an end, the reimbursement process is
initiated. Later, the workflow expert transforms the SysML activity diagram into
a Petri Net workflow specification as shown in Fig. 15.5. Finally, the Petri Net
workflow is executed by the employee using the CML App.

Let us assume the following:

• The CML App has access to CML core services, including the CML calendar
service.

• The WFs (a), (b), and (c) as shown in Fig. 15.5 are the resulting Petri Net
workflows created by the workflow experts and are available in the central
CML repository or the workflow store. These PN workflows can be accessed
by CML App, i.e., the users are able to download the required workflows and
execute them in the CML App. The sub-workflow (c) is a dynamic workflow
and can be invoked to manage unexpected (error) situations. Notice that
all three workflows are pre-defined, the workflow experts have created one
sub-workflow to manage all unexpected (or error) situations.
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• The CML services (such as mobility, parking, etc.) provide tickets, parking
lot information, visiting passes for authorized requests similar to an OAuth
resource request.

We use the following notations in Fig. 15.5: employee as e, manager of company A,
B, and public funded project as mA, mB, and mP respectively, and CML calendar
service as cal. The Petri Net places and transitions are marked with corresponding
identifiers such as at1 for WF (a) transition 1 and bt1 for WF (b) transition, re-
spectively. Below, we describe step by step process the business mobility use case
involving three workflows (a), (b), and (c) as shown in Fig. 15.5. Assume that the
employee (e) from company A wants to attend a business meeting organized by the
manager (mB) in company B.

• The project manager of company B (mB) creates a meeting with an identifier
(mID) in the CML calendar. This identifier is required by the employee (e)
of company A to initiate the travel request using the CML App.

• The employee (e) of Company A makes a travel request using the meeting
identifier mID in his CML App.

• When a travel request is raised, the CML App executes the WF (a) as shown
in Fig. 15.5, i.e., it sends an approval request to his manager (mA).

• The manager (mA) approves the request by placing a token in the place mA
in Fig. 15.5.

• Next, the Oracle place cal performs a GET request with meeting mID to the
CML calendar service’s REST interface to retrieve event information such as
location, time, etc.

• Assuming that all input tokens are available for the transition (at1) of WF
(a), transition at1 evaluates whether the mID, employee email address, and
approval from his manager are valid or not. Assume that this is a special
trip that requires additional approval from mP. Given this special case, the
transition (at1) executes the transition contract that fires a token in the open
place (oa) and in the normal output place as shown in Fig. 15.5.

• Alternatively, if this trip does not require additional approval, then transition
at1 generates a token only in the normal out place and not in the open place
(oa). The token generated by at1 has information for the next transition
at2 e.g., OAuth token with a secret with which that transition at2 does not
need a token from the open place (ob). Therefore, the transition at2 fires
only with its normal input place. Similarly, it is possible to execute WF (a)
without invoking WFs (b and c). This scenario describes that was no need for
a particular approval and there was no error. Note: the tokens generated by
each transition contain the information for the next transition, i.e., whether
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the next transition should expect tokens from its respective open places or
not.

• Note: we continue the discussion considering that this trip needs particular
approval from mP as described earlier.

• The CML workflow enforcement engine processes the token from the WF (a)
open place (oa) and downloads the workflow WF (b) from CML repository to
be executed in particular cases. The project manager (mP) approves or rejects
the trip request. As a result, WF (b) transition contract (bt1) evaluates and
fires output tokens in the open place (ob).

• The token in place (ob) provides a secret (similar to an OAuth access-token)
required by the transition at2 to get the tickets from CML mobility services.

• In case of unforeseen circumstances (delay or cancellation of chosen mobility
service), the traveler can request an alternative transportation option via
CML App. The oracle place (err) monitors the information of selected train
from the mobility service provider. The transition (at3) evaluates the error
token, if the traveler wants to end the trip, then it places a token in place
(end) and places a cancellation / new tickets request in open place (oc).

• If the traveler requests alternative tickets, then transition (at3) places this
request in the open place (oc). This token is processed by a dynamically
generated WF (c) of the mobility service provider. If the error conditions
cannot be solved in an automated fashion, then human intervention is in-
voked. Thus, new tickets are delivered via the open place (od). Note: figure
15.5 shows the workflow only until this stage, the rest of the workflow steps
can be executed with more transitions and places.

• Thanks to the transition contracts in Petri Net based workflows, fine-grained
access – such as, temporary access valid during the meeting period – can be
granted to enter company B (for example, access to meeting rooms), reim-
bursements can be automated, i.e., after a successful trip a waiting time is
introduced using timeout transition and if the trip is not successful then a
default process is initiated.

• In the end, the organizer of the meeting mB can confirm the attendees through
his CML mobile App. Therefore the payment transition is activated such
that payment to mobility providers, reimbursements to the employees can be
handled appropriately.

A private blockchain can be used in the CML for accountability. Every Petri Net
transitions’ input and output tokens are recorded as transactions on the blockchain.
This feature provides data immutability and opportunity for future auditing in case
of any fraud without a centralized trusted entity. There are several advantages for
companies to enforce such business mobility conditions on their employees. The
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companies could restrict its employees from using transportation services for private
purposes. Further, the employees can only use the cost-effective transportation
available. By automating this process, the overhead for the employees and its
managers is reduced. The companies can satisfy regional policies such as reducing
the carbon footprint.

15.3 Car Sharing

Car sharing services such as DriveNow and Car2Go are popular for short-term car
rental. For instance, DriveNow and Car2Go have their own workflow to rent a car,
finish the rental, and for payment. A customer must first register to the service
with his/her driving license, proof of address, payment method (credit card or bank
account details), and personal identity. The customer is provided with either a card,
login credentials, or other means of authentication credentials to access the service.
Most car sharing services provide a web-service and mobile application.

Our aim was to apply our framework and methods to solve a real use case. There-
fore, as an example, we chose the car hire process of DriveNow and applied our
methods to solve it. Note: the rental process described in this use case is only
based on our experience, and this process can be updated (or outdated) anytime by
the service provider and might not be valid anymore. A SysML activity diagram
describing the rental process of DriveNow is shown in Fig. 15.6.

We translate the SysML activity diagram of DriveNow car hire process into our
Petri Network workflows as shown in Fig. 15.7.

The customer chooses one of the two available methods to rent a car: (a) using the
DriveNow card; (b) using the DriveNow mobile application (App).

• Method(a): the customer finds a DriveNow car in the street with Green LED
blinking on the car’s windshield. Green LED means the DriveNow car is
available, and Red LED means it is not available. Now, the customer can use
his DriveNow card to open the car.

• Method(b): the customer can plan ahead, reserve a DriveNow car for 15
minutes using his DriveNow mobile application (App). First, an available car
is selected in the App. Second, the customer must use his login credentials to
authenticate and reserve the car for 15 minutes. The customer should open
the reserved car within 15 minutes; otherwise, the reservation is canceled.

• Step1: Assume that the customer used one of the two available methods (a
or b) as described above to get inside the car. This action is depicted as
placing a token at place cus by the customer in Fig. 15.7. The Transition
(at1) process this token in place (cus), availability of the car (with inbuilt car
information) in place (car) and opens the door.
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Figure 15.6: SysML Activity Diagram of DriveNow Car sharing platform

• Step2: The customer must enter his secondary authentication PIN in place
(apn) using the car’s touch interface in the dashboard. The transition (at2)
checks the PIN entered via the information available from DriveNow server.
If the PIN is valid, transition at2 places the token in place (drv). Now, the
customer can start and use the car.

• Dashboard information for the driver: if the car leaves the DriveNow busi-
ness area of city it belongs to, then a warning notification appears on the
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Figure 15.7: Petri Net workflow specification of DriveNow use case

dashboard, i.e., it is not possible to end of the rental outside the business
area – park and keep option is allowed, but with probably different charges.
DriveNow is also offering rental packages for hours and days and with this
contract business area restriction does not apply.

• Step3: the customer can park and keep the car or end the car rental via
the App or car’s dashboard. This decision is recorded and processed by the
transition (at3).

– Step3.1: if the customer parks and keeps the car using park and keep
option, then he can re-enter the car using his App or DriveNow card
using the same steps described in step1 to continue.

– Step3.2: Note: this step is not available within the described car sharing
service. We included this to show that our method can handle error con-
ditions. Assume an error condition such as breakdown or malfunction,
the transition at3 allows the customer to report it via the App and that
can be processed by DriveNow to allow new business logic that can help
the customer to reach his destination via other methods, etc.
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• Step4: the customer can end car rental if the car is in the business area (geo-
fenced area). If the conditions are valid, then transition (at4) allows to end
the rental and places a token in place (inv). The trip invoice is calculated
and sent to his email based on his usage. If automatic payment is enabled,
then the amount is billed to his credit card.

Figure 15.7 shows the Petri Net workflow of DriveNow car sharing use case. The
interaction between the customer and a DriveNow car is described on WF (a), and
WF (b) describes the DriveNow (DN) server processing the car sharing requests
(i.e., in the form of tokens) from WF (a) via open Petri Net places. As you can
see, when using a particular service the customer must download an application
provided by that particular service provider. If our method is applied, a common
workflow application can be used to rent cars from different service providers - only
the car hire process and their specific workflows must be modeled and provided to
our workflow application.

15.4 Supply Chain

This particular use case is used to evaluate of Petri Nets based Secure Smart Con-
tract Generation Framework. This section presents a supply chain use case and the
advantages of using the blockchain approach.

A supply chain is a network of different organizations involved in the process of
moving products from one or more suppliers to a customer. The products can
be raw materials, small parts, natural resources (e.g., minerals), food, finished
products, or even a service. A few examples of involved parties and stakeholders
are the manufactures, customers or consumers, logistic companies, distributors,
insurance providers, regulatory bodies, and so on.

If the participants of the supply chain are enforced to record essential data on the
blockchain, then the following features of blockchain reduce the chances of fraud
in a supply chain process. The blockchain technology provides a single source of
truth, a transparent auditability of the historical events, and proof of provenance
by storing data in an immutable way. The main focus of any supply chain use case
is to have an audit trail of products to track provenance. The blockchain ensures
a correct and verifiable audit trail throughout the lifetime of the product.

As the use case is dynamic and depends on the domain type of the product, it
is important to generate a smart contract that fits the use case. These domain-
specific workflows can be modeled by domain specialists without the knowledge of
smart contract development. Our proposed smart contract modeling and genera-
tion framework is designed with this focus and therefore brings all the advantages
described in the section 12.1. As described earlier, after modeling, the developer
or smart contract expert reviews the generated smart contract and deploys it to
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Figure 15.8: An example Petri Net workflow that shows a part of the supply chain
use case.

the blockchain network. In this step, before deploying the smart contract code, the
smart contract developer needs to perform a requirement analysis of essential data
that is required to on the blockchain, and define the scope of the methods (i.e.,
which methods should be public, private, etc.).

Our approach allows the domain specialists to simulate and test the workflow or
business requirements prior to the code generation part, this activity provides the
confidence that the smart contract is modeled as required. Our approach can sup-
port different blockchain technologies with one standard modeling approach, thus
it minimizes the development cost, testing, and verification efforts. In particular,
with our approach, we improve security by minimizing the errors in the design stage
of smart contract development (correctness-by-design).

For simplicity reasons, we modeled only a part of the supply chain use case with
desirable features and actions involved. An example of a part of a supply chain use
case is shown in Fig. 15.8. The modeled Petri Net workflow consists of three Oracle
places, five normal places, and two transitions. The Oracle places (p11,p7,p9)
represent some external information that is sent by different equipment and sensors
such as a scanner, a temperature sensor, and a humidity sensor. The first transition
(t12) checks if the scanned asset ID (_scanned_id) from the Oracle place (p11)
equals to the already registered asset_id from the place (p14). If transition t12
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conditions evaluate true, then it passes a token (asset_exists) to the input place
(p23) of the second transition (t2). The transition (t2) has two additional input
oracles named _humidity and _temperature besides the input place (p23). The
guarded commands of the transaction t2 checks if the humidity value exceeds the
threshold of 50 or the temperature value exceeds 25, if this evaluates true, then the
threshold_reached boolean variable is set to true and the temperature and humidity
variables are set accordingly. If the temperature value is less than or equal to 25 and
the humidity value is less than equal to 50 then the threshold_reached variable is
set to false. In either case, all output places (p5, p20, p19) of transition t2 receives
a token.

The Petri Net visual modeling tool allows assigning the tokens to the starting places
and oracles, which makes it possible to simulate the workflow with the arbitrary
tokens and fire the transactions prior to the smart contract generation step. That
way each transition can be tested with different token values to cover the complete
condition space set by the guarded commands. The user can fire each transition
separately, or fast forwards through the complete Petri Net model and execute all
transitions.

The generated solidity code from the PN workflow shown in Fig. 15.8 is presented
in the appendix listing A.2. The generated smart contract follows the approach
that was explained in the chapter 12.1.4. The code is separated into two types
of functions: one is the main execute function which represents the execution flow
of the transitions; and, the other is the normal function which encapsulates the
guarded commands and assignments written in the transitions.

The execute function represents the execution flow of the workflow through the
conditioned execution of the functions representing transitions. These functions are
executed only if all incoming places of each transition are enabled, which means
that they contain tokens. Next, the incoming places of the first transition are
enabled to start the execution at the beginning of the execute function.

The normal functions of the transitions have limited internal scope for the execution
- this prevents the functions from being publicly executable, and the functions being
called within the contract itself or any derived contracts. The body of the normal
function starts with the definition of local variables which are created from input
and output places connected to the transition. In the case of input places, the
variable of the incoming input token is assigned to the local variable whereas, in
case of the outgoing tokens, the variables are initialized to the default value of the
output place.

Below, we explain how guarded command conditions written in the transitions are
translated into the code. Every translation that holds guarded commands execute
the following three steps:
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• Consume: Each condition first starts by consuming the tokens of all addressed
places of the guarded command and therefore disabling the place. This is done
by assigning the token state variable to false.

• Assign: Next, the logic of guarded commands is translated into the code,
resulting in the list of assignments to the local variables of the tokens.

• Produce: The last step is to produce tokens for outgoing places. This process
is done by first assigning the token values of the local variables to the global
ones followed by assigning the state variables of tokens to true and therefore
enabling the outgoing places.

15.5 Use Case Discussion

A use case and its requirements, entities involved and their relationship with IoT
devices and external services can influence what features of the WFAC are nec-
essary, suitable, and how they can be used. In this section, how the use case
factors such as IoT device constraints and handheld security influence the WFAC
framework and how one can implement the WFAC in a generic distributed IoT
applications are presented.

15.5.1 IoT devices and their capabilities

Depending on the use case, thee IoT devices used can be either constrained devices
or powerful. If the IoT device is constrained the introduced PAT profile and receipt
token concepts are necessary, otherwise, if the IoT device is powerful, then only the
receipt token concept of the WFAC is necessary.

• Even the considered constrained IoT devices should be able to perform prim-
itive cryptographic operations including hash, encryption, decryption, and
token validation. In addition, they can maintain a partial workflow state and
pass workflow information to other entities in the form of receipt tokens. For
instance, constrained IoT devices may benefit from other powerful devices
such as a border router or a secure handheld (e.g., with workflow applica-
tion) that support to retrieve and publish information to external services.
These powerful devices act as a proxy between constrained devices and the
external devices, therefore, they must be able to authenticate against each
other. Thus, entities that maintain and pass the workflow state to each other
must also be secure. To support such constrained IoT devices and to protect
the client identity information, the PAT profile is introduced in the WFAC
framework.
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• A powerful IoT device can support transport layer or application layer en-
cryption, have unlimited power resources, and have direct communication
with external services without requiring a proxy. In this situation, intro-
ducing the receipt tokens concept from the WFAC is sufficient to prove to
other IoT devices or services that the workflow participant has completed
the previous workflow task. When the transport layer or application layer
encryption is available to protect end-to-end communication, the introduced
PAT profile is not necessary. Note: The motivation of the WFAC framework
is to support constrained IoT devices with capabilities such as performing
basic cryptographic operations as described above and not the devices that
cannot perform any cryptographic operations.

15.5.2 Handhelds and their capabilities

The handhelds that run the workflow application can be either trusted (i.e., the
handheld is developed by the resource owner or certified such that the secrets,
tokens, workflow state information cannot be tampered) or not trusted (i.e., the
handheld is not trusted and owned by the workflow participant, therefore, the
application and information stored can be tampered).

• Handhelds that run the workflow application can be secured by leveraging
hardware security approaches such as TEE. TEE guarantees that the cryp-
tographic operations and keys are protected in a secure enclave and cannot
be tampered easily. With this assumption, the workflow application may
use TEE to protect keys with which it could create short lived access tokens
such as OAuth tokens for the workflow participant. This allows the resource
owners to model workflows that can work without having continuous online
access for retrieving access tokens for authorization servers. Also, the work-
flow information, i.e., actions committed by the workflow participant and
receipt tokens of IoT devices can be processed and stored in the handheld
before being sent to other entities. For instance, the workflow application in
a handheld could maintain the local workflow execution state of the workflow
participant, then after finishing one or more tasks, aggregated information
can be published via an oracle. Oracles allow participants to create, read,
and update particular resources involved in the workflow. The workflow par-
ticipants can query the oracle to receive the current state of that workflow
information whenever necessary.

• If the handhelds are not trusted (i.e., the workflow info, secret or tokens can
be tampered), then the involved IoT devices must be secure and cannot be
tampered. In addition, the IoT devices must have the following capabilities:
support PAT profile and/or transport layer or application layer encryption,
the ability to handle receipt tokens and parse them, communication capabili-
ties to external services through which the receipt tokens and workflow state
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information can be published and synchronized locally (i.e., local IoT device
to device communication via the secure border router or master device) or
globally (e.g., communication with external service such as an oracle through
which all IoT device can query and synchronize information).

15.5.3 Distributed and decentralized ledger

This thesis focuses on decentralized and distributed IoT applications where the
owners may not trust each other. Therefore, a distributed, decentralized, and an
immutable ledger such as a blockchain can be used to record workflow events and
enable traceability of workflow actions committed by each participant. An oracle
can be used to query, publish, and updated information in the blockchain. In a
typical blockchain system, transactions consisting of one or more workflow states
are proposed by participating entities, and later, the transactions are approved
by other participating entities depending on the underlying consensus mechanism.
Thus, accountability and auditing can be guaranteed where no entities could trust
each other.
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Chapter 16

Conclusion

Over the recent years, IoT devices are used in many different applications, includ-
ing the critical infrastructure. Attacks on such IoT devices are increasing and also
getting more complex. Therefore, the shortcomings in IoT technologies motivated
us to develop security mechanisms to stop adversaries from using IoT devices for
malicious purposes. On the other hand, the IoT device owners want to enforce their
own rules and conditions on entities that want to access the exposed IoT services.
This thesis develops an access control framework that enforces workflows (repre-
senting owners’ rules and conditions) on entities that want to access distributed
resources such as in IoT. The introduced WFAC framework can be integrated with
user-friendly and practitioner-friend tools, interoperable IoT protocols, and WFAC
reduces the possible ways an attacker can compromise a system or resource pro-
tected with WFAC.

This thesis investigates the use cases of IoT devices and applications to identify the
requirements and problems that exist in the IoT. The research goals and scope of
this thesis are formulated based on the concrete use cases and requirements from
the stakeholders. Using the introduced WFAC framework, one can grant access
control permissions to entities in a more fine-grained form: “You are allowed to
execute this task in this workflow at this moment” instead of “You are authorized
to access this service during this period of time (temporal) or because you are
an admin (role), or because you possesses certain attributes”. The permission to
execute a step in a workflow depends on having executed the required previous
steps (i.e., based on the history) of the workflow.

The contributions of this thesis are summarized in the following three different
areas:

Workflow specification and enforcement: This thesis presents a Petri Net
based workflow specification and enforcement framework by extending and adapt-
ing the Petri Nets to support and secure emergent IoT applications. This thesis
demonstrates how the proposed method can solve different use cases and guarantee
workflow integrity, where workflows are enforced in a distributed IoT environment.
Besides, Petri Nets have simple semantics, PNs are easy to understand and do not
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need any prior mathematical background in contrast to other approaches such as
automata. The WFAC framework can be integrated with other practitioner-friendly
tools such as SysML. The thesis shows how the workflow specified in Petri Nets
can manage error situations by exchanging information via open Petri Net places -
therefore, this contribution satisfies the following Research Questions (RQ): RQ 1,
RQ 2, RQ 4, and RQ 3 for modeling, specification, and enforcement of workflows
including error-recovery features in distributed IoT environment.

IoT workflow services: This thesis introduces a lightweight workflow service
to support the workflow execution and to trace the history of actions committed
by the workflow participant in a distributed environment. The IoT device has
a workflow service that provides entities with a signed token (also known as the
receipt tokens) that certifies the workflow action completed by the entity. Thus,
receipt token provides an additional level of assurance to the entities that previous
workflow action has been completed successfully. The next IoT device or service
can verify that the participating entity has completed the relevant workflow action.
In addition, this thesis presented how privacy-enhancing tokens (PAT) can be used
in situations, where IoT devices might not use communication security protocols
such as DTLS. Therefore, this contribution satisfies the following Research Question
(RQ): RQ 1 and RQ 2 in a distributed IoT environment.

Blockchain and smart contracts: WFAC framework includes a tool that trans-
lates the Petri Net workflows into a Smart Contract template. The generated
smart contract templates can be deployed in a blockchain with little additional
effort. Smart contracts can guarantee workflow execution as defined and publish
the information of actions committed by the entities on the immutable ledger pro-
vided by the blockchain. Thus, one can achieve accountability in an untrusted,
distributed, and decentralized environment. In addition, the WFAC allows using
an accountability database such as a blockchain, for recording important workflow
events via the AS, RS, and WF-App - which could be later used for auditing pur-
poses. Therefore, this contribution satisfies the following Research Question (RQ):
RQ 5 and RQ 2, where entities do not have to trust one central trusted entity to
ensure workflow integrity and accountability.

To summarize, this thesis presents the WFAC framework for a distributed environ-
ment that supports the following:

• To specify workflows as Petri Nets, which are amenable to formal verification
that can be created in a stepwise manner with the help of practitioner friendly
and user friendly tools such as SysML - satisfies RQ 1 and RQ 3.

• To restrict an entity from using an application/service/resource by enforcing a
prescribed workflow. This workflow includes enforces fine-grained authoriza-
tion constraints based on the least privilege and need to access principle. The
introduced method is applicable in the IoT environment via OAuth tokens
and the introduced receipt tokens. In addition, WFAC supports a workflow
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application that allows entities participating in a workflow to have a choice,
for example, to accept (or reject) “contracts” or conditions and thus, enforces
the integrity of Workflow - satisfies RQ 1 and RQ 2.

• A method to handle error conditions by supporting the creation of dynamic
workflows - satisfies RQ 4.

• To enable distributed accountability while executing the workflow, i.e., ac-
tions executed by entities executing the workflow are recorded in an im-
mutable database. In addition, WFAC includes a framework to generate
Petri Net based smart contracts that can be natively deployed on a blockchain
platform - satisfies RQ 5.

16.1 Discussion

This thesis has contributed to the existing research by introducing the WFAC
framework. However, the approach introduced also has some limitations. The
limitations of the proposed framework are discussed below:

Deadlocks when merging workflows: Consider three small individual processes
a, b, and c designed and verified for Petri Nets properties. With the help of open
Petri Nets, it is possible to create interfaces between those three different processes
a, b, and c. Therefore, the concept of high-level Petri Nets helps to create a main
workflow consisting of one or more sub-workflows. When two or more sub-workflows
are merged without proper validation, then it is possible to have deadlocks. For
example, when we combine only two of them (a and b) or (b or c), then there may
not be any deadlock but, when all three workflows (a, b, and c) are combined,
then there could be a deadlock. Figure 16.1 shows such an example with three
WFs a, b, and c where the WF(b) is in a state after producing a token in its open
place ob, then the token in ob can be either consumed by WF(a) via transition t2
or WF(c) via transition t1. If one WF consumes the token in ob, then the other
WF cannot proceed. Therefore, it is essential to validate and verify the properties
before merging sub-workflows with the main workflow.

Design flaws and resulting errors in Petri Nets: A Petri Net analysis engine
cannot detect a design problem or a flaw introduced by the process or the use case
itself. For example, assume that a Petri Net workflow is developed to protect some
assets in the building. For instance, if the process does not include closing the
secure door after accessing the assets, then this significant design flaw cannot be
detected by the Petri Net analysis tools themselves. Therefore, designing workflows
using Petri Nets does not guarantee error (e.g., deadlock-free) free workflows. The
four-eyes principle can be used to verify such problems in the process using another
expert. The errors or problems in the process design can be reduced when it is
reviewed by several experts. Once the process is designed without obvious design
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WF (a)

oa

ob

t2

WF (b)

oa

ob

WF (c)

ob

t1

Figure 16.1: The token in open place ob of WF (b) can be consumed either by t2 of
WF (a) or t1 of WF (c). This prevents either WFs (a or c) to proceed
forward.

flaws, then it can be evaluated with Petri Nets analysis tools for properties such as
deadlock-freeness.

Battery Exhaustion Problem: The handhelds and the IoT devices involved
in the workflow execution usually rely on batteries for their power supply. For
example, a handheld is expected to work for a short period of time without a
connection to some external services (e.g., a service that synchronizes the workflow
states to an accountability server). In such situations, if the battery-operated
handheld loses power, then the workflow state or actions committed that are not
persistent in the handheld memory are lost. The battery exhaustion problem is
not a limitation to the proposed method but is a common issue of systems that
operates on battery power without connectivity to external systems, thus, without
the power and persistent data storage, the current status and related actions are lost
if they are not synchronized to trusted external entities. If the workflow states are
stored temporarily in the handhelds, then appropriate security mechanisms must
be deployed to protect the confidentiality and integrity of workflow related secrets
and state information.
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Optimization issues in smart contract generation framework: As the
framework was developed to adapt to any blockchain technology, the smart con-
tracts generated are not optimized for a blockchain platform. For example, in
Ethereum blockchain, a platform specific value known as gas is required to run
a smart contract. The gas value has some monetary value and is introduced to
protect the abuse of computational resources in a distributed environment. The
smart contract code (Ethereum based solidity) presented in the appendix listing
A.2 is not optimized to minimize the consumption of gas as this was not a fo-
cus of this thesis. The generated smart contract is only a template; appropriate
business-logic conditions must be developed by a developer before deploying the
smart contract. This process could introduce additional coding language specific
errors. This topic is not within the scope of this work. This thesis recommends
the integration of smart contract vulnerability analysis tools coupled with manual
expert reviews before deploying them on the blockchain.

Regulatory Compliance with Laws: The WFAC framework proposes the use
of a blockchain platform to record workflow related information transparently (e.g.,
approvals, actions committed by the workflow participant). Traditionally, when a
piece of data is recorded in a blockchain, then because of its inherent properties such
as immutability, this data stays in the blockchain forever and cannot be deleted
or erased. In contrast, privacy regulations such as GDPR demand the responsible
data controllers and data processors to comply with strict rules such as “right
to be forgotten” - which states that the data owner has the right to inform the
data controller to delete all data related to the data owner. Moreover, in many
permissionless blockchain architectures, there is no single legal entity (e.g., data
controller) who is responsible for complying with such laws. A recent study (see
[42]) submitted to the EU Parliament discusses these issues carefully and proposes
three different policy recommendations to address this issue. Also, permissioned
blockchain platforms such as Hyperledger Fabric are working towards addressing
some of these issues e.g., in Hyperledger Fabric v2.0 1. This is still an open issue
and has to be researched further. This thesis did not focus on this topic; however,
it recognizes this as an important issue that should be solved as future work.

16.2 Future Work

Although this thesis has presented a WFAC framework, there are few open ques-
tions that could be investigated as future work. This section presents potential
research directions.

1https://hyperledger-fabric.readthedocs.io/en/release-2.0/private-data/
private-data.html
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16.2.1 Smart Contract Generation

Current implementation supports only Ethereum based smart contract language,
i.e., the Solidity. In the future, the tool can be extended to support other blockchain
platforms such as Hyperledger Fabric. Also, the Solidity smart contracts generated
from Petri Nets are not optimized. For instance, the Solidity smart contracts may
consume gas value based on the resources used within the smart contract. The gas
units contain a certain monetary value in the real blockchain network. Therefore,
Smart Contracts must be optimized to consume less gas before deploying them. One
of the approaches to minimize gas consumption can be further work by extending
the introduced smart contract generation module. For example, one can use bit
arrays to store state variables of tokens instead of separate variables for each token.
For example, Garcia et al., in [135] explains a type of optimization concept with its
advantages and limitations.

16.2.2 EU Funded Research Projects

As a continuation of this thesis, to further develop the research concepts and to
address some of the open issues discussed earlier, the author of this thesis is in-
volved in two EU funded H2020 research projects: (a) Cyber Security for Europe
(CyberSec4Europe 2) and A COmprehensive cyber-intelligence framework for re-
silient coLLABorative manufacturing Systems (COLLABS 3). In particular, the
aforementioned projects focus on industrial scenarios involving supply chain and
manufacturing use cases. The topics include investigation of what information
must be stored in the blockchain (on-chain or off-chain) to provide the following
properties: transparency, auditability, and traceability while protecting the privacy
and confidential information of the involved stakeholders. One of the main focus
involves the specification of the information model, the data structure of the work-
flow events published as transactions. This includes information stored on-chain
(i.e., the blockchain) and off-chain (e.g., a private local database storing confidential
information and publishing a hash of the data object on the main blockchain).

16.2.3 Local Reasoner

This thesis has introduced a lightweight IoT workflow service as part of the IoT de-
vices to evaluate whether the workflow participant has performed the corresponding
workflow specific action or not. The IoT device should be aware of the workflow
and its tasks or actions that must be conducted by the workflow participant to

2https://cybersec4europe.eu/
3https://www.collabs-project.eu/
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access its service. In existing implementation, the rules are static. As future work,
to enable dynamic rules, it is crucial to have a rule processing engine.

A local reasoner is an envisioned rule processing component within an IoT device
that can reason from the information that is passed to the device and other existing
Trust rules. As a result of the evaluation, the reasoner should be able to either grant
or deny access to the resources for the workflow participant.
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Appendix A

Petri Nets Workflows

A.1 Petri Net Markup Language (PNML) example

The exported PNML code of the supply chain use case presented in section 15.4
is shown in listing A.1. Some parts of the XML code are omitted for readability
(brevity) reasons.

A.2 Smart Contract Generation Solidity Code

The generated Solidity smart contract of the supply chain use case presented in
section 15.4 is shown in listing A.2.
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Appendix A. Petri Nets Workflows

<?xml version='1.0' encoding='UTF-8'?>
<pnml>

<net id='scd'>
<place id='p9' isGlobalVar='true'>

<initialMarking>
<multiset>

<item>
<value>

<object type='int'>19
</object>

</value>
<multiplicity>1</multiplicity>

</item>
</multiset>

</initialMarking>
</place>
<place id='p5' isGlobalVar='false'>

<initialMarking>
<multiset>

<item>
<value>

<object type='bool'>true
</object>

</value>
<multiplicity>1</multiplicity>

</item>
</multiset>

</initialMarking>
</place>

...<omitted for brevity>...

<transition id='t12'>
<guard id='1'>

<condition>scanned_id == asset_id
</condition>
<symbol>correct_asset</symbol>
<expression>true</expression>

</guard>
<guard id='2'>

<condition>scanned_id != asset_id
</condition>
<symbol>stop</symbol>
<expression>true</expression>

</guard>
</transition>

<transition id='t2'>
<guard id='1'>

<condition>
_humidity>50 || _temp>25

</condition>
<symbol>threshold_reached</symbol>
<expression>true</expression>

</guard>
<guard id='2'>

<condition>_humidity>50 || _temp>25
</condition>
<symbol>humidity</symbol>
<expression>humidity</expression>

</guard>
<guard id='3'>

<condition>_humidity>50 || _temp>25
</condition>
<symbol>temperature</symbol>
<expression>_temp</expression>

</guard>
<guard id='4'>

<condition>_temp <=25 && _humidity <=50
</condition>
<symbol>threshold_reached</symbol>
<expression>false</expression>

</guard>
</transition>

...<omitted for brevity>...

<arc id='ge6' source='t2' target='p5'>
<inscription>

<expression>threshold_reached
</expression>

</inscription>
</arc>
<arc id='ge10' source='p9' target='t2'>

<inscription>
<variable>temperature</variable>

</inscription>
</arc>
<arc id='ge8' source='p7' target='t2'>

<inscription>
<variable>humidity</variable>

</inscription>
</arc>
<arc id='ge13' source='p11' target='t12'>

<inscription>
<variable>scanned_id</variable>

</inscription>
</arc>
...<omitted for brevity>...

</net>
</pnml>

Listing A.1: The snippet of the PNML of the Petri Net model shown earlier.
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A.2. Smart Contract Generation Solidity Code

pragma solidity ^0.4.24;

contract Scd {

// Template Variables
address owner;

// Global variables
bool threshold_reached;
bool threshold_reached_enabled;
uint asset_id = 8462674;
bool asset_id_enabled;
uint temperature;
bool temperature_enabled;
uint humidity;
bool humidity_enabled;
bool asset_exists;
bool asset_exists_enabled;

constructor()
public {

owner = msg.sender;
}

// State Machine
function execute(

uint _scanned_id,
uint _temp,
uint _humidity

)
public
returns(string _functionName) {

asset_id_enabled = true;

if (asset_id_enabled)
fire_t12(_scanned_id);

if (asset_exists_enabled)
fire_t2(_temp,_humidity);

return "execute";
}

// Transitions
function fire_t2(

uint _temp,
uint _humidity

)
internal
returns(string _functionName) {

// LOCAL FUNCTION VARS
bool asset_exists_local = asset_exists;
uint humidity_local;
uint temperature_local;
bool threshold_reached_local;

if (_humidity > 50 || _temp > 25) {

// Consume
humidity_enabled = false;
temperature_enabled = false;
threshold_reached_enabled = false;

// Assign
threshold_reached_local = true;
humidity_local = _humidity;
temperature_local = _temp;

// Produce
threshold_reached = threshold_reached_local;
threshold_reached_enabled = true;
humidity = humidity_local;
humidity_enabled = true;
temperature = temperature_local;
temperature_enabled = true;

}

if (_temp <= 25 && _humidity <= 50) {
// Consume
threshold_reached_enabled = false;

// Assign
threshold_reached_local = false;

// Produce
threshold_reached = threshold_reached_local;
threshold_reached_enabled = true;

}

return "t2";
}

function fire_t12(uint _scanned_id)
internal
returns(string _functionName) {

// LOCAL FUNCTION VARS
uint asset_id_local = asset_id;
bool asset_exists_local;

if (_scanned_id == asset_id_local) {
// Consume
asset_id_enabled = false;

// Assign
asset_exists_local = true;

// Produce
asset_exists = asset_exists_local;
asset_exists_enabled = true;

}

return "t12";
}

}

Listing A.2: The generated Solidity smart contract for the Petri Net model shown
earlier.
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Privacy Enhanced Tokens (PAT)
Profile

The PAT protocol includes three actors: Resource Server (RS), Client (CL), and
Authorization Server (AS). PAT message flow is shown in Fig. B.1 and in the
following, they are described in detail. Note: the messages in [square brackets]
mean they are optional.

A PAT message sent from actor A to actor B is represented using the following
notation: “A -> B : Message Name”. The arrow between entities depict the message
flow direction.

B.1 RS <> AS: Security Association Setup

The RS and its AS share a long term shared secret (K) when device commissioning
but how it is done is out of scope. The long term secret is considered a symmetric
secret in the context of PAT profile but ACE-OAuth allows also asymmetric secret.
During the commissioning phase, the internal clock of RS is synchronized with
the AS and the cryptographic algorithms, parameters and profiles supported by
the RS are registered with AS. For time authenticated time synchronization, the
Lightweight Authenticated Time (LATe) Synchronization Protocol [176] could be
used together with PAT profile.

B.2 [CL > RS : ResourceRequest]

Initially, CL may not have a valid Access-Token (AT) to access a protected R hosted
in RS. If the CL does not have the corresponding AS-Info to request AT from AS.
To receive the appropriate AS-Info, CL may send a Resource-Request message to
RS without a valid AT.
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CL

CL

RS

RS

AS

AS

1 Security-Association-Setup

2 [ Resource-Request ]

3 [ Unauthorized-Request (AS-Info) ]

4 Security-Association-Setup

5 Access-Request

6 Access-Response

7 Resource-Request

8 Resource-Response

Figure B.1: PAT protocol message flow

To enable resource discovery, RS may expose the URI /.well-known/core as de-
scribed in RFC 6690 [177], but this resource itself may be protected. Thus, CL can
optionally make a CoAP GET request to the URI /.well-known/core.

B.3 [RS > CL : UnAuthorizedRequest(ASInfo)]

Once RS receives a resource request from a CL, it checks:

• If CL has attached a valid Access-Token (AT) with the request or not. If not,
then RS must respond to CL with code 4.01 unauthorized request. Optionally,
RS may include information to reach the /token endpoint exposed by the AS
(AS-info).

• If CL has attached the valid Access-Token (AT), but not for the requested
resource then RS must respond with 4.03 (Forbidden)

• If CL has a valid access token, but not for the method requested then RS
must respond with 4.05 (Method Not Allowed)

• If CL has a valid access token, then RS must follow the procedure described
in Sec. B.8 to create a valid response to CL.

Figure B.2 shows the sequence of messages with CoAP types between CL and RS
for the above Un-Authorized-Request.
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B.3. [RS -> CL : Un-Authorized-Request(AS-Info)]

CL

CL

RS

RS

1 Res-REQ
Header: GET (code=0.01)
Type: Confirmable
URI-Path: .well-known/core

2 Res-RSP

Header: Unauthorized (code=4.01)
Type: Acknowledgement
content-type:
application/cbor
Payload: {AS-Info, params}

Figure B.2: C<->RS Resource-Request and Unauthorized as response

Header: 4.01 (Unauthorized)
Content-Type: application/cbor+pat;

pat-type="UnAuthReq"
Payload:

{
AS-Info: "coaps://as.example.com/token",
#protected
TIC params:

{
nonce: 'rs-nonce..',
kid: '..',
[alg]: '..',
TAG: '..'

}
}

Listing B.1: AS information + LATe time synchronization payload

The RS may send an unauthorized response with additional information such as
AS-Info and parameters (params) to mitigate attacks based on time synchroniza-
tion. The Lightweight Authenticated Time (LATe) synchronization protocol’s de-
scription of scenario in section 6.2 suits PAT protocol and can be used for time
synchronization. LATe protocol is published as an IETF draft (see [176]).

The response payload from AS may include AS information (AS-info) and param-
eters (params) that include LATe time synchronization’s information object such
as key-reference ID (kid) shared secret between RS and AS, a nonce to prevent
replay attacks and optionally, the Message Authentication Codes (MsgAuthCode)
algorithm used for producing the MsgAuthCode. RS is recommended to create a
MsgAuthCode tag for LATe parameters and objects. Listing B.1 shows RS example
response message to CL encoded using CBOR [178] with pat-type=“UnAuthReq”.
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B.4 CL <> AS : Security Association Setup

After receiving AS-Info from RS, CL must establish a secure channel with the AS
for making further requests. The AS establishes a confidential channel with CL.
How this secure connection (e.g., a DTLS channel) should be established is out of
the scope.

Notice that, it is important to ensure that the connection between AS and CL must
be reliable and secure since the PAT protocol relies on the fact that the messages
exchanged between CL and AS are protected and confidential. If the Client is also
a constrained device, then CL may use DTLS-profile as described in [49] to create
a secure channel with the AS.

The RO registers information about clients in AS and therefore, AS may have
an access-control list for allowing authorized clients to access a particular list of
resources. How this access control list or similar mechanisms are implemented is
out of scope. With this access-control list, AS can validate two things: (a) whether
the client is allowed to establish a secure connection or not; (b) whether the client
has privileges to access the requested R in RS or not. In the next steps, these
details are discussed.

B.5 CL > AS : AccessRequest

Once CL establishes a secure communication channel with AS, CL sends an access-
request to AS at endpoint /token requesting an access token RS as described in
[48].

Optionally, CL includes the details about the resources R in the request. If optional
info is not available, then AS should prepare an access token with default permis-
sions. Fine-grained access to resources (R) of RS depends on the infrastructure or
services the RS offers. Listing B.2 shows the detailed access request message from
CL to AS.

B.6 CL < AS : AccessResponse

After AS receiving an access-request message from a CL and successful validation
AS performs the following actions:

• If the access request from CL is valid (i.e., operations are covered by the
privileges defined by the RO), then AS prepares the AT and sends it with
COAP response code 2.01 (Created).
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B.6. CL <- AS : Access-Response

Header: POST (Code=0.02)
Uri-Host: "coaps://as.example.com"
Uri-Path: "token"
Content-Type: "application/cbor+cwt+late ;
late-type=tic"
Payload:

{
"grant_type" : "client_credentials",
"client_id": "...",
"client_secret": "...",
"aud" : "tempSensor",
"scope": "GET|POST",
... omitted for brevity ...
LATe params:

{ [if exist]
nonce:'rs-nonce..', # same rs-nonce sent by RS
kid: '..'

}
TAG: .. # LATe MsgAuthCode tag produced by RS

using the shared key k with AS.
}

Listing B.2: Example Client Access-Request message to AS
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CL

CL

AS

AS

1 DTLS

2 Access-REQ

Header: POST (code=0.02)
content-type:
application/cbor
URI-Path: token
Payload: {ACC-REQ}

3 Access-RSP

Header: Created (code=2.01)
content-type:
application/cbor
Payload: {ACC-RSP}

Figure B.3: Example CL Access-Request message to AS and its response from AS

• If the Access-Request from CL contains Lightweight Authenticated Time
(LATe) time synchronization objects then appropriate parameters are in-
cluded in the response.

• If the client request is invalid then AS must send appropriate COAP error
response code as specified in [48].

Figure B.3 shows an access-request message sent from CL to AS to get an access
token (AT).

The AS constructs the AT and the verifier (the symmetric PoP key) as the answer
for a valid access request from CL. The contents of the access-response (ACC-RSP)
payload are logically split into two parts: the Access-Token (AT) and the Verifier
(which is the Symmetric PoP key), they are explained in detail below.

B.6.1 AccessToken construction:

The Access-Token (AT) is constructed by AS using the CBOR Web Token (CWT)
claim parameters as described below:

• iss (issuer): AS identity

• aud (audience): resource server URI or specific resource URI for a fine-grained
procedure.

• exp (Expiration Time): token expiration time

• iat (Issued At): token issued at time by AS

• cti CWT ID should be unique for every AT.
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B.7. CL -> RS : Resource-Request

• scp (Scope): Note that scp is not a CWT claim. It can specify allowed
methods such as GET, POST, PUT or DELETE.

Other CWT claims are optional. It is recommended to avoid the CWT claim sub
(subject) as it exposes client identity.

B.6.2 Verifier or PoP key construction:

Verifier (the Symmetric PoP key), is constructed as the result of the following
operation: G (K, AT) where,

• G: the MAC algorithm which is used to create the verifier, we propose
Poly1305 RFC 7539 [179]. Notice that G is a function which takes two pa-
rameters (key, data) as input and it produces a keyed digest as the output

• K: the shared key between AS and RS

• AT: constructed using CWT claims as explained before

The Client will use the verifier as the key material to communicate with the RS,
i.e., if CL wants to encrypt its payload, it uses the verifier as the key. Note: the
verifier is never sent in cleartext.

Therefore, the access-response message with the access token and the verifier
must be sent to CL through a secure channel. The shown example considered a
DTLS channel between CL and AS.

The time-synchronization between AS and RS may be implemented based on the
application requirements using LATe time synchronization protocol [176]. The AS
should specify required parameters as described in [48] such as the type of token,
etc. Also, if the Access-Request from CL does not include any profile, AS must
signal CL to use an appropriate or default profile.

Listing B.3 shows the example of an Access-Response sent from AS to CL after suc-
cessful validation of C’s credentials which were presented using an Access-Request
message.

B.7 CL > RS : ResourceRequest

Once CL receives the access-response from AS, CL can construct a Token (Tk)
which will demonstrate that CL has got the sufficient authorization to access re-
sources (R) in RS. Note: the difference between Access-Token (AT) and Token (Tk)
is that the former is constructed by AS and the later is constructed by CL using
the AT from AS.
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Header: 2.01 (Created)
Content-Type: application/cbor+cwt+pat; pat-type="tk"
Location-Path: token/...
Payload:
{

"access token": b64'SlAV32hkKG ...
{
"iss": https://as.example.com
"aud": "tempSensor",
"scp": "read",
"iat": 1...,
"cti": "..", # Unique can be a Sequence Number
"exp": 5...,
"alg": "chacha20/poly1305",
"profile": "ace_pat"

}
"cnf":
{
COSE_Key: {

"kty": "symmetric",
"kid": h'...
"k": b64'jb3yjn... #[verifier]

}
}

LATe Param:{
as_time: '..',
nonce: 'rs-nonce..',
}

tag: '..' #LATe tag
}

Listing B.3: Example Access-Response message sent from AS to CL with detailed
CWT params and payload info
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B.7. CL -> RS : Resource-Request

CL

CL

RS

RS

1 Res-REQ

Header: POST (code=0.02)
URI-Path: /firmware
Payload:
{
access-token:{Client-Token, AuthHash}
chacha20/poly1305
(

key=Verifier,
nonce=C_nonce,
AAD,
data=firmware

)
}

2 Res-RSP

Header: Created (Code=2.01)
Location-Path:/...
Payload:
{ chacha20/poly1305

(key=Verifier,
nonce=nonce++, AAD,
data=value)

}

Figure B.4: RES-REQ from CL using /authz-info implemented at RS

A Tk must be attached to each RES-REQ sent to RS by CL. If payload data
are included, then CL should encrypt the payload using the verifier as key and
optionally it can include an Authentication Hash (AuthHash). The AuthHash is
constructed by concatenating both verifier and a nonce (C_nonce) created by
the client i.g., AuthHash = hash(verifier + nonce). PAT profile provides nec-
essary recommendations i.e., using Authenticated Encryption with Associated Data
(AEAD) of chach20/poly1305.

As an example if CL performs:

• A CoAP GET request without payload. In this case, the request from CL
may be sent un-encrypted since it does not include confidential data, but the
response from RS with payload must be always encrypted and only the valid
CL must be able to decrypt it.

• A CoAP POST, PUT, or DELETE request with payload must be protected
and encrypted by using AEAD. PAT profile proposes to use ChaCha20-
Poly1305-AEAD authenticated encryption mechanism, while using the verifier
(PoP key) as the key and a client nonce (C_nonce). The AuthHash may be
protected by using it as Additional Authentication Data (AAD) in the AEAD
algorithm.

The RS must implement /authz-info endpoint to allow any Client to transfer the
Tk as described in [48] and listing B.4 shows the GET request from CL to RS
described in [48], with pat-type ="AuthReq".
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Header: GET
Content-Type: application/cose+cbor+pat;

pat-type="AuthReq";
Uri-Host: "coap://rs.example.com"
Uri-Path: /authz-info
Payload:
{ token: {

"access token": .. {
"aud": "tempSensor"
"scp": "read"
... #CWT omitted for brevity.

}
"nonce": ..
"AuthHash": .. #[AuthHash=hash(verifier+nonce)]

}
LATe:{
time:'as-time',
nonce:'rs-nonce',# rs-nonce from RS LATe object
} tag: '..' #LATe tag

}

Listing B.4: Example of valid GET RES-REQ from CL to RS including time-sync
using endpoint /authz-info.
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B.8. RS -> CL : Resource-Response

Table B.1: RS Internal state table of ATs
Verifier cti_x-1 exp scp next cti (cti_x)
G(k,AT) cti_x0 = of AT of AT cti_x1 =

cti of AT hash(cti_x0, verifier)

The CL performs a GET request to “tempSensor” using CWT claim aud, and
together CL also transfers Tk to the RS. PAT allows performing both RES-REQ
and transferring authorization information in RES-REQ. The next example shows
how to perform a resource request if CL performs a POST request with encrypted
payload information.

Listing B.5 shows an example of POST Resource-Request from CL to RS de-
scribed in [48], with pat-type=“AuthReq”. Listing B.5 shows the POST Resource-
Request where the Uri-Path “/authz-info” allows the authorized client to perform
firmware upgrade on the RS using the CWT claim “aud:firmwareUpd”. PAT recom-
mends protecting sensitive information such as the payload using AEAD algorithm
(chacha20/poly1305). The client should use the verifier or PoP key as the key,
a nonce, and AuthHash as AAD.

B.8 RS > CL : ResourceResponse

After receiving the request, RS verifies the Tk. RS can construct its own version of
the verifier or PoP key by performing G (K, AT) from the AT. RS checks whether
AuthHash = Hash (verifier + nonce) is valid or not. If Tk and AuthHash are
valid, then RS sends an encrypted response using the verifier (PoP key).

When the RES-REQ with a Tk arrives from CL to RS, RS must evaluate the
resource request and the Tk in the following order:

• Step 0: Check whether the contents of Tk are derived from an AT or not.

• Step1: If Tk contains the AT from AS, extract AT. Extract nonce and Au-
thentication Hash (AuthHash) from the request message.

– Step1.1: (If available) Verify the freshness of the sequence number (cti)
in the access token presented by AS.

– Step1.2: Generate the verifier by computing G(k, AT) where K is the
shared key between AS and RS.

– Step1.3: Compute a verification hash as hash(verifier+nonce) and
compare the result with AuthHash for correctness.
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Header: POST (Code=0.02)
Content-Type: application/cose+cbor+pat;

cose-type="encrypt0";
"pat-type="AuthReq";

Uri-Host: "coap://rs.example"
Uri-Path: /authz-info
Payload:
{# COSE

token: {
"access token": .. {

"aud": "firmwareUpd"
"scp": "write"
... CWT omitted for brevity,
}

"nonce": .. # nonce
"AuthHash": .. # [AuthHash=hash(verifier+nonce)]
LATe params:{

time:'as-time',
nonce:'rs-nonce', # rs-nonce from \gls{RS} LATe objects

} tag: '..' #LATe tag
}
# COSE_Encrypt0 + COSE_MAC0 Protected
ciphertext:{
#Chacha20/Poly1305 AEAD payload using

# key=verifier,
# nonce=..,
# AAD=AuthHash
},

tag: ..
}

Listing B.5: Example of valid POST request from CL to RS
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B.9. Construction of Derived-Tokens (DT)

– Step1.4: Check if the access token has valid CWT parameters such as
aud, scp, exp, nbf, etc for the requested resource or action to be
performed.

– Step1.5: If LATe params info available, synchronize RS internal clock
using LATe object as described in [176].

• Step2: If the token is valid, RS should create a temporary internal state as
shown in Tab. B.1 below with details of CWT claims cti, exp, scp, and
the verifier (PoP key).

• Step 3: If the token is valid, then RS decrypts the payload from the client (if
exist) verifier (PoP key).

• Step 4: After that, RS prepares the response and encrypts the payload with
a fresh nonce (RS_nonce), PoP key. Only the CL with a valid key (the
verifier) can decrypt the payload.

The RS internal state table which is shown in Tab. B.1 also includes “next cti”.
The next cti (cti x) value is computed as the Hash of previous cti (cti x-1)
and the verifier. The purpose of this is explained in the Sec. B.9.

B.8.1 RS Responsecodes to CL

• If the Tk is valid – as discussed above –, then RS must respond with payload-
data as described above with the appropriate response code as described in
RFC 7252 [180]. For example, a POST request with 2.01 (created) or 2.04
(changed).

• If the Tk is invalid, then RS must respond with code 4.01 (Unauthorized)

• If the Tk is valid but does not match the aud or resource CL is requesting
for then RS must respond with code 4.03 (Forbidden)

B.9 Construction of DerivedTokens (DT)

The objectives to create Derived-Token (DT) are the following:

• To produce Unlinkable Token (Tk). It is not efficient for the client to request
a new AT from AS everytime. Also, if CL uses the same AT from AS, info
such that the same client is accessing the resource several times can leak
because of the CWT claim cti (which is a unique identifier).

• To reduce Tk size (efficiency in transport) that the client must send to RS
/authz-info in every resource request.
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• To create Tk that may have limited access to protected-resources – fine-
grained resource access tokens – from the original AT that could grant more
privileges to protected-resources on RS. For example, an AT could provide
permissions to access all protected-resources on RS via CWT claims audience
aud and scope scp. The client could derive a Tk providing access to a reduced
set of protected-resources available on RS from the initial AT.

CL > RS : ResourceRequest via DerivedTokens (DT)

The CL receives an encrypted response from RS after its first RES-REQ with the
AT from AS. The CL creates a new Derived-Token (DT) using CWT claims as
described below. In order to minimize the data size, we use only the claims which
are required. Listing B.6 shows the detailed resource request via derived tokens.

• Client may prepare a DT with a subset of scope scp operations that the
client received from the initial AT. It creates the first derived cti_x1 by
hash(cti_x0 + verifier) from the CWT claim cti of the original AT. The
subsequent derivation of cti_x can be performed by a generic function cti_x
= hash(cti_x-1 + verifier). Note that DT must include all the necessary
CWT claims such as cti_x, aud, exp, scp. All other CWT claims are
optional.

• Client creates the AuthHash=(verifer+nonce).

• Client prepares encrypted content using verifier as the key – if there is any
payload –.

• Note: in AAD, CL includes AuthHash and Derived-Token (DT), so that the
payload cannot be misused/exchanged with another RES-REQ or nonce.

RS > CL : ResourceResponse to DerivedToken (DT)

After receiving the Tk which encapsulates the Derived-Token (DT) from CL, RS
performs the following Steps. If any of them fails, then RS must send an UnAutho-
rized response to CL, and CL must use the first AT, which was received from the
AS, or request a new AT based on RO. The Tab. B.2 shows the RS internal state
table with an example.

The RS performs the following actions before creating a response:

• RS extracts CWT claim cti (cti_x) from the Derived-Token (DT) and
checks if it exists in its internal state table. If RS finds the cti_x, then
RS uses the corresponding verifier, cti_x-1, exp, scp to perform the
validation of next steps.
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B.9. Construction of Derived-Tokens (DT)

Header: POST (Code=0.02)
Content-Type: application/cbor+cwt+cose++pat;

cose-type="encrypt0";
"pat-type="AuthReq";

Uri-Host: "coap://rs.example"
Uri-Path: /firmware
Payload:
{

# COSE
token:
{ derived-token(DT):

"aud": "firmwareUpd",
"exp": ..
"scp": "write",
"cti": hash(cti_x+verifier)
# cti_x=hash(cti_x-1+verifier).

}
"nonce": .. # new nonce
"AuthHash": h'bfa03.. #[Hash=(verifier+nonce)]
# COSE_Encrypt0 + COSE_MAC0 Protected
ciphertext:
{

# Chacha20/Poly1305 AEAD payload using
# key=verifier,
# nonce=..,
# AAD=AuthHash,DT
h'....omitted for brevity

},
tag: h'... omitted for brevity

}

Listing B.6: Example of valid Resource-Request from CL to RS using a derived-
token(DT)

Part VI 205



Appendix B. Privacy Enhanced Tokens (PAT) Profile

Table B.2: RS updating its internal table with cti values both old and current
msg# Verifier (V) cti_x-1 exp scp cti_x=

hash(cti_x-1+V)
0 G(k,AT) 0x00 of AT of AT 0xAB

hash(0x00+V)
1 (upd) G(k,AT) 0xAB of AT of AT 0xFF

hash(0xAB+V)

– RS checks that cti_x = hash(cti_x-1 + verifier)

– RS checks that AuthHash = hash(verifier + nonce)

– RS checks that the permissions are valid using scp and expiration time
exp

– RS updates the new cti_x-1, cti_x in its internal state table

– RS creates an encrypted response to be sent to CL with a payload in-
cluding payload-data.
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Glossary

automata theory “Automata theory is the study of abstract computing devices,
or machines´´ [2]. 35

bearer assertion The token (or an assertion) a party presents as proof of identity,
where possession of the assertion itself is sufficient proof of identity for the
assertion bearer (see [181]).. 50

data confidentiality Data Confidentiality deals with protecting against the dis-
closure of information by ensuring that the data is limited to those authorized
or by representing the data in such a way that its semantics remain accessible
only to those who possess some critical information (e.g., a key for decrypting
the enciphered data) (see [182]). 25

data integrity A property whereby data has not been altered in an unauthorized
manner since it was created, transmitted or stored [183].. 25

InternetofThings IoT is defined as “[..] a dynamic global network infrastruc-
ture with self-configuring capabilities-based on standard and interoperable
communication protocols where physical and virtual things have identities,
physical attributes, virtual personalities, use intelligent interfaces, and are
seamlessly integrated into the information network”(see[99]). vii, 3, 47, 210

OAuth access token OAuth access tokens are credentials used to access pro-
tected resources. An access token is a string representing an authorization
issued to the client (see [48]).. 37

policy language “ A language that is used to write or represent a security policy
is called a Policy Language” [11].. 34

principle of least privilege “The principle of least privilege states that a subject
should be given only those privileges that it needs in order to complete its
task” (see [11]).. 30

security mechanism “A Security Mechanism is a method, tool, or procedure for
enforcing a security policy” [11].. 25, 26
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Glossary

security policy “A Security Policy is a statement of what is, and what is not,
allowed” [11]. 26, 27

trust “Trust is characteristic of an entity that indicates its ability to perform cer-
tain functions or services correctly, fairly and impartially, along with assur-
ance that the entity and its identifier are genuine” [10].. 4
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Acronyms

AAD Additional Authentication Data. 199, 204

ABAC Attribute-Based Access Control. 33, 34, 37, 57, 58, 62

AC Access Control. 16, 18

ACE Authentication and Authorization for Constrained Environments. 5, 10

ACL Access Control List. 31, 34, 62

AEAD Authenticated Encryption with Associated Data. 199

AI Artificial Intelligence. 47

AIOTI Alliance for the Internet of Things Innovation. 21

API Application Programming Interface. 108

AS Authorization Server. xvii, xxiii, 7, 50, 61, 70, 88–91, 113, 114, 117–119, 122,
162, 191–194, 196, 197, 201, 203, 204

AT Access-Token. xix, 50, 88–91, 191, 192, 194, 196, 197, 201, 203, 204

BPMN Business Process Model and Notation. 43, 86

CapBAC Capability-Based Access Control. 60, 62

CAS Client Authorization Server. 89

CBOR Concise Binary Object Representation. 110, 193

CCAAC Capability-Based Context-Aware Access Control. 60

CCS Calculus of Communicating System. 42

CL Client. xvii, xxi, xxiii, 50, 70, 88–92, 121, 191–194, 196, 197, 199–206

CoAP Constrained Application Protocol. 16, 47, 49, 90, 91, 192, 199

COI Conflict of Interest. 27, 34

CPN Colored Petri Nets. 41, 59, 64, 78

CRM Customer Relationship Management. 57
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Acronyms

CSP Communicating Sequential Processes. 42

CWT CBOR Web Token. 92, 110, 196, 201, 203, 204

DAC Discretionary Access Control. 28, 29
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