The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 18 of 743
Back to Result List

Towards Quality of Service and Fairness in Smart Grid Applications

  • Due to the increasing amount of distributed renewable energy generation and the emerging high demand at consumer connection points, e. g., electric vehicles, the power distribution grid will reach its capacity limit at peak load times if it is not expensively enhanced. Alternatively, smart flexibility management that controls user assets can help to better utilize the existing power grid infrastructure for example by sharing available grid capacity among connected electric vehicles or by disaggregating flexibility requests to hybrid photovoltaic battery energy storage systems in households. Besides maintaining an acceptable state of the power distribution grid, these smart grid applications also need to ensure a certain quality of service and provide fairness between the individual participants, both of which are not extensively discussed in the literature. This thesis investigates two smart grid applications, namely electric vehicle charging-as-a-service and flexibility-provision-as-a-service from distributed energy storage systemsDue to the increasing amount of distributed renewable energy generation and the emerging high demand at consumer connection points, e. g., electric vehicles, the power distribution grid will reach its capacity limit at peak load times if it is not expensively enhanced. Alternatively, smart flexibility management that controls user assets can help to better utilize the existing power grid infrastructure for example by sharing available grid capacity among connected electric vehicles or by disaggregating flexibility requests to hybrid photovoltaic battery energy storage systems in households. Besides maintaining an acceptable state of the power distribution grid, these smart grid applications also need to ensure a certain quality of service and provide fairness between the individual participants, both of which are not extensively discussed in the literature. This thesis investigates two smart grid applications, namely electric vehicle charging-as-a-service and flexibility-provision-as-a-service from distributed energy storage systems in private households. The electric vehicle charging service allocation is modeled with distributed queuing-based allocation mechanisms which are compared to new probabilistic algorithms. Both integrate user constraints (arrival time, departure time, and energy required) to manage the quality of service and fairness. In the queuing-based allocation mechanisms, electric vehicle charging requests are packetized into logical charging current packets, representing the smallest controllable size of the charging process. These packets are queued at hierarchically distributed schedulers, which allocate the available charging capacity using the time and frequency division multiplexing technique known from the networking domain. This allows multiple electric vehicles to be charged simultaneously with variable charging currents. To achieve high quality of service and fairness among electric vehicle charging processes, dynamic weights are introduced into a weighted fair queuing scheduler that considers electric vehicle departure time and required energy for prioritization. The distributed probabilistic algorithms are inspired by medium access protocols from computer networking, such as binary exponential backoff, and control the quality of service and fairness by adjusting sampling windows and waiting periods based on user requirements. The second smart grid application under investigation aims to provide flexibility provision-as-a-service that disaggregates power flexibility requests to distributed battery energy storage systems in private households. Commonly, the main purpose of stationary energy storage is to store energy from a local photovoltaic system for later use, e. g., for overnight charging of an electric vehicle. This is optimized locally by a home energy management system, which also allows the scheduling of external flexibility requests defined by the deviation from the optimal power profile at the grid connection point, for example, to perform peak shaving at the transformer. This thesis discusses a linear heuristic and a meta heuristic to disaggregate a flexibility request to the single participating energy management systems that are grouped into a flexibility pool. Thereby, the linear heuristic iteratively assigns portions of the power flexibility to the most appropriate energy management system for one time slot after another, minimizing the total flexibility cost or maximizing the probability of flexibility delivery. In addition, a multi-objective genetic algorithm is proposed that also takes into account power grid aspects, quality of service, and fairness among par-ticipating households. The genetic operators are tailored to the flexibility disaggregation search space, taking into account flexibility and energy management system constraints, and enable power-optimized buffering of fitness values. Both smart grid applications are validated on a realistic power distribution grid with real driving patterns and energy profiles for photovoltaic generation and household consumption. The results of all proposed algorithms are analyzed with respect to a set of newly defined metrics on quality of service, fairness, efficiency, and utilization of the power distribution grid. One of the main findings is that none of the tested algorithms outperforms the others in all quality of service metrics, however, integration of user expectations improves the service quality compared to simpler approaches. Furthermore, smart grid control that incorporates users and their flexibility allows the integration of high-load applications such as electric vehicle charging and flexibility aggregation from distributed energy storage systems into the existing electricity distribution infrastructure. However, there is a trade-off between power grid aspects, e. g., grid losses and voltage values, and the quality of service provided. Whenever active user interaction is required, means of controlling the quality of service of users’ smart grid applications are necessary to ensure user satisfaction with the services provided.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dominik DannerORCiD
URN:urn:nbn:de:bvb:739-opus4-13731
Advisor:Hermann de Meer, Omid Ardakanian
Document Type:Doctoral Thesis
Language:English
Year of Completion:2023
Date of Publication (online):2023/12/11
Date of first Publication:2023/12/11
Publishing Institution:Universität Passau
Granting Institution:Universität Passau, Fakultät für Informatik und Mathematik
Date of final exam:2023/11/09
Release Date:2023/12/11
Page Number:xx, 172 Seiten
Institutes:Fakultät für Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
open_access (DINI-Set):open_access
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International