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Abstract

Due to the increasing amount of distributed renewable energy generation and the emerging
high demand at consumer connection points, e. g., electric vehicles, the power distribution
grid will reach its capacity limit at peak load times if it is not expensively enhanced. Al-
ternatively, smart flexibility management that controls user assets can help to better utilize
the existing power grid infrastructure for example by sharing available grid capacity among
connected electric vehicles or by disaggregating flexibility requests to hybrid photovoltaic
battery energy storage systems in households. Besides maintaining an acceptable state of
the power distribution grid, these smart grid applications also need to ensure a certain qual-
ity of service and provide fairness between the individual participants, both of which are
not extensively discussed in the literature. This thesis investigates two smart grid applica-
tions, namely electric vehicle charging-as-a-service and flexibility-provision-as-a-service
from distributed energy storage systems in private households.

The electric vehicle charging service allocation is modeled with distributed queuing-based
allocation mechanisms which are compared to new probabilistic algorithms. Both inte-
grate user constraints (arrival time, departure time, and energy required) to manage the
quality of service and fairness. In the queuing-based allocation mechanisms, electric ve-
hicle charging requests are packetized into logical charging current packets, representing
the smallest controllable size of the charging process. These packets are queued at hier-
archically distributed schedulers, which allocate the available charging capacity using the
time and frequency division multiplexing technique known from the networking domain.
This allows multiple electric vehicles to be charged simultaneously with variable charging
currents. To achieve high quality of service and fairness among electric vehicle charging
processes, dynamic weights are introduced into a weighted fair queuing scheduler that con-
siders electric vehicle departure time and required energy for prioritization. The distributed
probabilistic algorithms are inspired by medium access protocols from computer network-
ing, such as binary exponential backoff, and control the quality of service and fairness by
adjusting sampling windows and waiting periods based on user requirements.

The second smart grid application under investigation aims to provide flexibility provision-
as-a-service that disaggregates power flexibility requests to distributed battery energy stor-
age systems in private households. Commonly, the main purpose of stationary energy stor-
age is to store energy from a local photovoltaic system for later use, e. g., for overnight
charging of an electric vehicle. This is optimized locally by a home energy management
system, which also allows the scheduling of external flexibility requests defined by the
deviation from the optimal power profile at the grid connection point, for example, to per-
form peak shaving at the transformer. This thesis discusses a linear heuristic and a meta
heuristic to disaggregate a flexibility request to the single participating energy management
systems that are grouped into a flexibility pool. Thereby, the linear heuristic iteratively as-
signs portions of the power flexibility to the most appropriate energy management system
for one time slot after another, minimizing the total flexibility cost or maximizing the prob-
ability of flexibility delivery. In addition, a multi-objective genetic algorithm is proposed
that also takes into account power grid aspects, quality of service, and fairness among par-
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ticipating households. The genetic operators are tailored to the flexibility disaggregation
search space, taking into account flexibility and energy management system constraints,
and enable power-optimized buffering of fitness values.

Both smart grid applications are validated on a realistic power distribution grid with real
driving patterns and energy profiles for photovoltaic generation and household consump-
tion. The results of all proposed algorithms are analyzed with respect to a set of newly
defined metrics on quality of service, fairness, efficiency, and utilization of the power dis-
tribution grid. One of the main findings is that none of the tested algorithms outperforms the
others in all quality of service metrics, however, integration of user expectations improves
the service quality compared to simpler approaches. Furthermore, smart grid control that
incorporates users and their flexibility allows the integration of high-load applications such
as electric vehicle charging and flexibility aggregation from distributed energy storage sys-
tems into the existing electricity distribution infrastructure. However, there is a trade-off
between power grid aspects, e. g., grid losses and voltage values, and the quality of service
provided. Whenever active user interaction is required, means of controlling the quality of
service of users’ smart grid applications are necessary to ensure user satisfaction with the
services provided.
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CHAPTER 1
Introduction

Addressing climate change has become the most important goal for the world population
in the 21st century, and reducing greenhouse gas emissions is one key factor in achieving
this goal. With more than 70 % of the global greenhouse gas emissions coming from the
energy sector (energy used in buildings, industry, and transportation) [141], many govern-
ments are granting incentives for new renewable energy sources, energy storage, energy-
efficient heating, and carbon-neutral transportation, focusing primarily on fossil fuel re-
duction. Consequently, many distributed Photovoltaic (PV) installations, Battery Energy
Storage Systems (BESSs), and new electrical loads for heating and transportation such as
heat pumps and Electric Vehicles (EVs) are emerging on the customer side. This chapter
provides a short motivation for the two smart grid applications under investigation in this
thesis, states the problem formulation, and gives a summary of the contributions.

1.1 Motivation

The power grid is the largest machine built by humankind and typically consists of genera-
tors (producers), loads (consumers), and grid assets (cables, transformers, etc.) that connect
the former two. Because a large amount of electrical power is difficult to store, the tradi-
tional power grid is operated with the paradigm supply follows demand, hence centralized
(fossil-fueled) generators produce as much power as required to serve all connected loads.
With the shift towards renewable energy sources such as wind or solar, which depend on
weather conditions and therefore can only be partially controlled, generation can no longer
follow demand, and demand-side integration is required for stable power system opera-
tion. In addition, generation capacity in the form of PV systems is installed at residential
loads, turning them into prosumers, who consume and produce at different times. Fore-
casting the future demand and generation of these prosumers is much more complicated
than simply using Standard Load Profiles (SLPs) like it is done in the traditional power
system [132]. This paradigm shift requires more flexible loads that participate in market-
based Demand Response (DR) programs or can be controlled remotely by the power system
operator or any third party offering control services. Furthermore, the rapid development
of BESS technologies enables new operation scenarios, where surplus energy can be stored
for later self-consumption and these BESSs additionally provide flexibility potential for
advanced power system operation. However, interaction with flexible loads and storage
systems requires additional stakeholders to be involved in the power grid operation, e. g.,
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end customers and BESS owners, and the possible limitations and conditions of the inter-
actions with the customer must be defined by service contracts.1 Because people tend to
not participate in services if they are not satisfied with the results, providing service quality
and fairness to the customers becomes more and more important. This shifts the original
customer relationship of the power grid operators by 180 degrees, whereby the customer no
longer only expects a stable grid connection from the power grid operator, but conversely
the power grid operator is dependent on control services from the customer side.

To compensate for demand and supply mismatches or power hardware faults, stable power
grid operation continuously requires Ancillary Service (AS), e. g., inertia, frequency re-
sponse, reactive power compensation, and voltage regulation, all of which are provided by
synchronous generators nowadays. On January 8, 2021, for example, the European trans-
mission system was separated into two parts due to outages of several transmission system
assets [49, 138, 139]. This separation caused an increased power system frequency in the
South-East area due to oversupply and reduced frequency in the North-West part of Europe
due to power deficit. The initial frequency drop was recovered by automatic countermea-
sures including inertia, additional supportive power supply (frequency response), and ul-
timately shutoff of interruptible loads in France and Italy. To reduce the frequency in the
South-East, generation was reduced until the frequency stabilized within the control limits.
This example emphasizes the importance of AS for stable power grid operation. Moving
from centralized synchronous generators, which can be found in large (fossil-fueled) power
plants, to smaller inverter-based renewable generation units results in a reduction of avail-
able ASs. Of course, special power grid assets such as flywheels, huge BESS, Direct Current
(DC) links, capacitor banks, and On Load Tap Changers (OLTCs) can provide ASs, but uti-
lizing existing technical equipment like wallboxes for EV charging or stationary BESS at
households is more ecological and will help to reduce required investment costs. Litera-
ture has demonstrated that EVs [116, 120, 148] and BESSs [63, 118, 172] can contribute to
frequency response on a large scale level. However, because some AS require the adaption
of user behavior or result in reduced power grid feed-in of PV systems, the provision of
these ASs should be done in a way to impact the comfort of the users in the lowest possible
way. Quality of Service (QoS) and fairness for the user2 are important aspects that should
be considered during provision in addition to technical requirements.

The integration of Distributed Renewable Energy Sources (DRESs) such as PV installa-
tions and additional relatively high loads such as EV charging on the customer side can put
tremendous pressure on today’s power distribution grids, which initially have been built to
only supply loads from mainly higher power grid levels. Especially, keeping power quality
standards and voltage bands in acceptable ranges as defined by EN 50160, while not over-
loading grid assets, is a challenging task for the Distribution System Operators (DSOs),
who typically operate their power distribution grid with little to no measurement devices.
Although grid connection codes already require certain passive behavior from connected
devices, e. g., reactive power supply for voltage regulation at PV inverters or predefined
feed-in curtailments, DSOs lack the capability for fine-granular active regulation in their

1Note that current energy contracts guarantee a 100 % service rate, and therefore participating in power grid
operation services can be seen as potential degradation.

2Here it is referred to the service that the flexible device provides to the user.
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Figure 1.1: Global EV stock (battery and plugin hybrid EVs) according to data from [82].
The line plot further shows the ratio of Battery Electric Vehicles (BEVs).

power distribution grids so far. Therefore, power distribution grids are designed and built
for estimated peak situations using historical load profiles and assumed simultaneity fac-
tors. However, EV charging facilities for households and PV rooftop installations can have
a rated power of more than 20 kW, which exceeds the assumed average household con-
sumption of around 4 kW. Hence, integrating numerous EVs and PV systems will require
expensive grid reinforcements when upgrading the power grid to estimated peak loads. In
2019, E.ON, one of the biggest electric utility operators in Europe, estimated the cost of
grid reinforcement to cover 100 % EV penetration (approximately 6.5 million cars in their
service area) at C 2.5 billion over the next 25 years [45]. With intelligent solutions and
incentives that target charging flexibility to shift EV charging from peak to low demand
times, e. g., from 18:00 evening peak to night hours, the required investment can be halved.

1.1.1 Electric Vehicle Home Charging

The global automotive industry is undergoing a transformation from internal combustion
engines to plugin-in EVs based on the needs of private sustainable-minded people and pol-
icymakers. Thereby, even new technology companies, such as Tesla, enter the market.
Figure 1.1 shows that the worldwide sales figures of EVs are increasing over the past years
leading to a stock of over 16 million EVs in 2021, including battery electric and plugin
hybrid EVs, which both can be charged from the electrical power grid. All these EVs need
public and private charging points, for which European policymakers started funding cam-
paigns, e. g., Germany invested more than C 500 million into private wallboxes until mid
of 2021 [93].

Most already installed charging equipment can be remotely controlled via the Open Charge
Point Protocol (OCPP), which starting from version 1.6 supports charging capacity limita-
tions [127]. Similarly, the communication between a charging point and an EV allows con-
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Figure 1.2: Annual global BESS behind-the-meter and utility-scale deployment according
to data from [81].

trol signals. For example, the legacy Type 2 Alternating Current (AC) charging, which is
widely used in Europe, can be controlled via basic Pulse-Width Modulation (PWM) signals
according to IEC 61851-1 or bidirectional high-level communication using ISO 15118-20.
More details on EV charging control are given in Section 2.3.1.

Although EVs are high power loads, their actual energy requirement depends on the driving
behavior of the users. According to [44], EV charging processes in domestic charging
have certain charging flexibility that reaches a peak in the evening, which aligns with the
expected peak load of household loads. This gives the possibility to dynamically change the
actual charging time as long as the mobility need of the drivers is satisfied. This charging
flexibility makes EVs in private households a perfect flexible unit to contribute to power
grid operation purposes.

1.1.2 Home Energy Management Systems

With the increasing number of stationary battery storage systems in private households,
e. g., between 2013 and 2018 more than 85 000 were installed in Germany [90], more and
more combined photovoltaic battery storage systems can provide higher negative and even
positive flexibility to the power grid by decreasing or increasing the power feed-in. The
potential is reflected by the yearly installed storage capacity depicted in Figure 1.2, which
was drastically increasing over the past years. This development is mainly driven by a
decrease of more than 50 percent in retail prices of lithium-ion batteries during that time,
which is reinforced by the rapid development of storage technologies for EVs [90].

Furthermore, the trend towards Plugin Hybrid Electric Vehicles (PHEVs) [80] and heat
pumps [83] enables additional flexibility at the household level. These high-power devices,
which can be shifted in time, are typically controlled by home Energy Management Systems
(EMSs) optimizing for customers’ objectives, e. g., maximize self-consumption of local
photovoltaic generation or the degree of autarky, avoid feed-in limits at the power grid
connection point, or minimize total energy costs [60]. Nevertheless, to achieve a successful
energy transition towards 100 % renewable energy, the flexibility potential of distributed
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households must be utilized from a more global viewpoint, while customers’ perspectives
should not be ignored to keep users satisfied with the provided service. Because BESSs are
typically used to store energy from local PV installations for later use, metrics like autarky
and self-consumption can be used to quantify the service quality of the BESS toward the
user. On the other hand, aspects of flexibility delivery probability might be of importance
for flexibility aggregators. Research projects [1, 61] have technically demonstrated how
local flexibility markets may look like. However, their focus is more on the technical
realization of flexibility than service quality of aggregated flexibility or users’ recognition
of their system in use.

1.2 Problem Formulation

Newly emerging high-power devices such as EVs and stationary BESSs must smoothly be
integrated into the power distribution grid. Therefore, to avoid unnecessary grid expansion,
their flexibility can be used to adapt their power profile to fit the DSO’s needs. However,
most control strategies in literature do not care much about the service quality of connected
smart grid applications. In our opinion, Quality of Service, Quality of Experience (QoE),
and fairness aspects are mandatory to discuss, because finally the customers are involved
when intervening with their devices, which transforms the technical smart grid applications
into a socio-technical challenge.

A similar trend can be seen in orchestrating communication networks, where some Internet
Service Providers (ISPs) use traffic shapers to guarantee a certain QoS, e. g., video quality
for Internet-based television and streaming, or to restrict bandwidth usage of certain appli-
cations, e. g., peer-to-peer file sharing. Network resource allocation mechanisms are also
used in data centers to guarantee service level agreements to the customers. Among others,
queuing techniques such as fair queuing or packet prioritization are used to optimize the
utilization of the shared network, typically in a central or distributed hierarchical manner. A
fully distributed resource sharing can be found in Medium Access Control (MAC) protocols,
where several communication endpoints share the same physical medium, e. g., a cable or
the air. Thereby, they need to coordinate who is allowed to use the medium and at which
time. Among others, probabilistic methods or master-slave protocols are used, whereby
priority access to the medium can be used to guarantee QoS for a certain application.

In the future, this might require new supply agreements between power grid operators, ag-
gregators, and customers that include service level agreements in terms of provided service
on the application level, e. g., charging-as-a-service instead of flat-rate connection service.
Similar to ISPs that offer a connection with up to a certain bandwidth. These contracts can
adapt to specific application fields, e. g., flexible charging power for EV charging. This the-
sis investigates two specific smart grid applications, namely EV charging-as-a-service and
flexibility disaggregation service to distributed EMSs. Actively controlling these smart grid
applications requires consideration of the effect of the control signal on the power grid and
the service degradation that can be expected at each customer. The following requirements
target technical applicability, interoperability with controllable devices, and the acceptance
of the user.
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• Legacy Equipment: The rollout of technical equipment for EV charging and EMSs
as well as stationary BESSs already started and with evolving time, the capabilities
of these devices improve. However, a control solution should work with a default set
of control options to be wide-range applicable and backward compatible.

• Power grid utilization: Control strategies should be designed in a way that they can
operate with the existing power grid infrastructure to avoid grid reinforcements and,
therefore, save material and emissions. Besides overloading situations, voltage vio-
lations must be avoided as well. Finally, control strategies should efficiently utilize
the power grid infrastructure to reduce power losses.

• Reliability and safety: Information and Communication Technology (ICT)-based
control strategies should be able to operate in case of communication failures and by
design consider principles of functional safety in critical infrastructures.

• Scalability: Given the target number of EVs from political decisions and the ex-
pected number of distributed EMSs with BESS, the control mechanisms for smart
grid applications must efficiently scale with the number of participants and the un-
derlying power grid infrastructure.

• Responsiveness: Energy markets work in 15 min time intervals; hence, all set-point
planning should be possible in this time horizon. However, power systems have faster
dynamics and a reaction to threshold violations should be possible in a timescale of
seconds to minutes to avoid harming the power grid.

• Quality of Service/Quality of Experience: To keep participating customers happy,
the delivered QoS of the smart grid application must be continuously high. Oth-
erwise, customers might not be attracted by the smart grid application service and
switch to another flexibility aggregator or request a non-controlled grid connection
from the power grid operator.

• Fairness: Besides high QoS and QoE, fairness among participants is similarly im-
portant for smart grid applications. If customers are served unfairly, their trust in
smart controller logic is damaged, and they might try to trick the system.

The discussed control strategies in this thesis will target all the aforementioned require-
ments, mainly focusing on the customers’ perspective as well as grid-related challenges.

1.3 Contributions

We study the Quality of Service (QoS), Quality of Experience (QoE), and fairness aspects
of smart grid applications in the two main areas of (1) charging-as-a-service for distributed
EV home charging, and (2) flexibility provision-as-a-service to distributed home EMS, in-
cluding EV charging processes and stationary BESS. While mainly focusing on the service
of the smart grid applications, we additionally discuss means of controlling voltage and
power grid losses from a grid operators’ perspective.
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Given the scenario of EV home charging, where certain service parameters are known in
advance, we answer the following research question.

C1 How to quantify the QoS and QoE of EV charging-as-a-service? To answer this
question, we propose a comprehensive set of QoS and QoE metrics in Sections 3.3.1
and 3.3.2. Among others, these metrics consider the ratio of charged energy to the
required energy, the continuity of charging power rate, the battery State of Charge
(SoC) at departure, and the ability to reach the destination of an upcoming trip. Com-
pared to the literature, the proposed metrics cover the full charging process as a ser-
vice, instead of EV charging as a grid participant.

C2 How to quantify experienced fairness between charging processes? We discuss fair-
ness notions in Section 2.2 and apply the fairness index by Hoßfeld et al. to EV
charging-as-a-service, whereby we not only examine the fairness of the quality met-
rics at the very end of a charging process but also throughout the whole charging
process duration.

C3 How can charging-as-a-service be realized with high QoS, QoE, and fairness in a
hierarchical and distributed probabilistic way? We propose an efficient and hierar-
chically scalable packet queuing allocation mechanism in Section 3.4.1 that takes the
residual charging time and the current SoC into account and ensures fairness among
charging services. The provided models include not only temporal charging slot
allocation (with fixed charging power rates), but also distribute the available charg-
ing capacity during each time slot while respecting charging hardware limitations
and control protocol capabilities. In Section 3.4.2, we further propose a novel dis-
tributed probabilistic control strategy inspired by communication network protocols
to allocate available charging power capacity. Thereby, charging service parameters
are used to control QoS aspects by configuring additional waiting time and random
backoff windows in case of power grid threshold violations.

C4 How well do queuing-based and probabilistic solutions perform concerning to QoS,
QoE, and fairness? In Section 3.5, our proposed solutions are evaluated on the
IEEE 906 low-voltage test feeder with real user driving profiles extracted from a
mobility survey. In contrast to simpler queuing policies, the proposed dynamically
weighted fair queuing approach achieves both high QoS results and good fairness
indices throughout the whole charging service. The probabilistic approaches reach
lower service quality due to a lack of global information; however, scale better with
the number of participating EVs.

C5 How can voltage levels be maintained by charging-as-a-service and what impact
does it have on the service quality and fairness? In the simplest case, each EV will
need to react to voltage violations locally as defined in Section 3.5.1.2, e. g., us-
ing Q(U) and P(U) droop controllers according to VDE-AR-N 4100. However, this
may lead to service quality and fairness degradation as shown in experiments in Sec-
tion 3.5.3.3. Furthermore, the simultaneous reaction of EVs might cause undesirable
high power grid losses. To reduce this, we further discuss a decentralized mecha-
nism to orchestrate reactive power provision based on the max-consensus protocol
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enriched with domain knowledge of the power distribution grid in Section 3.6.4 as
an extension to the proposed charging power allocation mechanisms.

Given the scenario of home EMS in private households, where day-ahead load and genera-
tion profiles are known in advance, we answer the following research question.

C6 How to utilize local flexibility from EVs and BESS for optimal day-ahead operation
and external flexibility requests? In Section 4.2, a detailed Mixed Integer Linear Pro-
gramming (MILP) formulation is introduced that models the day-ahead planning of
an EMS at a private household. This includes scheduling EV charging services as
well as optimally charging and discharging a local BESS. In addition to local opti-
mization, the solution space of the MILP yields the flexibility potential for external
flexibility requests from the flexibility aggregator.

C7 How to quantify the QoS and QoE of flexibility provision-as-a-service? To answer
this research question, we propose a comprehensive set of QoS and QoE metrics
in Sections 4.3.1 and 4.3.2 that consider quality aspects relevant for the resource
provider as well as the resource aggregator. Among others, these metrics target
the ratio of service participation of an individual EMS, the reached level of self-
consumption and autarky, as well as the total cost for the resource aggregator.

C8 How to disaggregate flexibility requests to a pool of EMSs efficiently to optimize for
the flexibility cost, delivery probability, power grid losses, as well as QoS/QoE and
fairness among the EMSs? We propose a linear heuristic for flexibility disaggre-
gation in Section 4.4.1 that targets minimization cost or maximization of flexibility
delivery probability. This method however is limited to a single convex objective.
For a more generalized setup, we present a meta heuristic to include QoS/QoE and
fairness aspects, as well as power grid losses in the multi-objective optimization in
Section 4.4.2. Thereby the proposed Genetic Algorithm (GA) does not implement
the classical procedure but applies either the crossover or the mutation operator to
each chromosome in one generation. This improves the performance of the GA in
two ways. First, the chance of obtaining an invalid chromosome is reduced, and,
second, due to efficient fitness value caching, the number of processed chromosomes
is increased within the same time limitation.

C9 How well do linear and meta heuristic perform concerning to QoS, QoE, and fair-
ness? In Section 4.5, the proposed linear and meta heuristic are evaluated on their
performance with regard to the defined quality metrics. The tested flexibility aggre-
gator consists of 55 households that operate their own EMS with recorded household
and PV profiles from real systems and are connected to the same IEEE 906 low-
voltage test feeder.

1.4 Chapter Summary and Thesis Structure

Fighting against global warming is the most important task of modern society. This can
only be achieved through a massive reduction of greenhouse gas emissions, leading to
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drastic changes in global energy management. The increasing number of EVs and BESS
behind-the-meter will pose new challenges to today’s electrical power system, but also
offers the opportunity to take advantage of their flexibility. However, the transition from
flat-rate tariffs to service-based smart grid application contracts involves interference with
the normal usage pattern of the assets, thus putting the user into the control loop. To ensure
the convenience of the user and to keep them participating with their flexibility in the power
system operation, automatic control methods must take into account QoS and fairness of
the smart grid applications. In addition, other requirements such as support for legacy
equipment, optimal power grid asset utilization, and scalability must be ensured. This
problem formulation leads to a number of contributions in this thesis, which are organized
as follows.

First, Chapter 2 gives an overview of the European power system, flexibility in the power
domain, and ancillary services that are required to operate the power grid. The chapter
further discusses the notion of QoS, QoE, and fairness, which come from the networking
domain. Furthermore, required background knowledge on the two smart grid applications
under investigation is provided, including control capabilities and typically used commu-
nication protocols. A literature review provides an overview on the domain of EV charging
control and power flexibility provision to distributed EMS, whereby different notions of
QoS, QoE, and fairness in the domains are highlighted. The chapter concludes by providing
the general assumptions that are valid for both smart grid applications under investigation.

In the context of online charging control, EV charging-as-a-service is discussed in Chap-
ter 3. First additional assumptions are given, before the charging service model and its
QoS and QoE metrics are defined. The chapter further describes the two proposed charging
service allocation mechanisms, one using queuing networks and one based on probabilistic
network protocols. The evaluation is carried out on the IEEE 906 low-voltage test feeder
in co-simulation with realistic EV driving demands extracted from a mobility survey in
Germany. Afterward, possible application scopes of the proposed methods are discussed as
well as remaining technical and legal challenges.

Chapter 4 investigates the smart grid application for flexibility provision-as-a-service to
distributed EMSs as an offline planning problem. First, the local optimization of an EMS
within a private household is modeled by a MILP, which is capable of scheduling external
flexibility requests. This flexibility potential is aggregated to a flexibility pool. For disag-
gregation of a flexibility request to the single EMSs, a linear heuristic with a single objective
function and a multi-objective meta heuristic are proposed. Both methods are evaluated in
terms of their performance, service quality, and fairness. Afterward, a possible application
scope is discussed together with technical challenges.

Finally, the main contributions of this thesis are summarized in Chapter 5 with a discussion
of the limitations of the thesis results.

1.4 Chapter Summary and Thesis Structure 9
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CHAPTER 2
Background and Related Work

This chapter provides fundamental background on power systems in Section 2.1, includ-
ing briefly the history, common power grid topologies, and main aspects of power grid
operation. Second, Section 2.2 discusses the terms Quality of Service, Quality of Expe-
rience, and different concepts of fairness, mainly coming from the computer-networking
domain. In the following, the smart grid applications under investigation are analyzed in
Sections 2.3 and 2.4, including the technical constraints and controllability, as well as a lit-
erature overview on related work in these two domains. Afterwards, the main assumptions
for the thesis are stated in Section 2.5, before the chapter concludes in Section 2.6

2.1 Electrical Power System

Since the end of the 19th century, electricity is used worldwide for commercial purposes.
However, electricity generation does not always reside at the location of its consumption,
therefore the power grid infrastructure started to grow. In the beginning, single generators
were serving nearby loads using short DC power distribution systems, which nowadays
would be called (DC-) microgrids. With increasing demand, more current is transmitted
over the DC lines, which in turn causes higher power losses according to Ohm’s law. As
consequence, system engineers switched to AC power systems that by design decouple the
power distribution from the power transmission system, which is operated at much higher
voltage levels to reduce the current flow and therefore transmission losses. AC-based power
systems became the world standard, typically operated with a frequency of either 50 Hz
or 60 Hz. With an increasing number of customers and their geographical distribution,
smaller AC microgrids merged to form synchronous interconnected power systems. The
Western European power system for instance spans from Portugal to Turkey, and from
Algeria to Denmark. Other European regions, such as the Island of Ireland, the United
Kingdom, Scandinavia, and the Baltic States operate their own synchronized power system,
which is interconnected with other power systems usually via DC lines to decouple the
frequency. To keep the frequency stable, power supply and demand must match in the
synchronized interconnected power system. Nowadays, this is ensured by energy market
mechanisms with different time scales from long-term contracts (several years) to day-
ahead and intraday markets, where energy is traded in products of 15-minute duration.
Power reserve markets allow for balancing the power grid, in case the traded energy and
the actual energy flow mismatch at the moment of delivery. Including all the involved
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stakeholders, the market design, and control mechanisms, the power system is a complex
system that requires many entities to interact with each other.

The current power system is composed of power transmission and distribution grids as
shown in Figure 2.1. Typically, huge power generators (e. g., nuclear power plants or large
offshore wind farms) are connected to extra-high voltage levels at the transmission system,
which transports the power over long distances to the consumers. The power distribution
grid is operated at high voltage (for big customers with high demand), medium voltage (for
smaller industries), and low voltage levels (for household connections). The trend towards
DRES leads to many small generators at low and medium voltage levels being connected
to the power distribution grid, which originally was built to transport electricity from large
generators to distributed consumers. In some situations, this even can cause a reverse power
flow from the lower voltage distribution levels to higher ones, which makes operating the
not-fully monitored power distribution grid a more complex task. In Europe, the essential
characteristics of the supply voltage at grid connection points are given in EN 50160, which
defines the frequency, amplitude, waveform, and symmetry of three-phase voltages. The
frequency must reside 99.5 % of a week within 49.5 Hz and 50.5 Hz and is not allowed to
pass 47 Hz or 52 Hz. Similarly, 10-minute average voltage values must reside within ±10 %
of the nominal voltage. The standard further specifies supply voltage unbalance lower than
2 % and total harmonic distortion limits for system frequencies of higher-order harmonics.
Besides these power quality aspects, the power grid service for the customer in terms of
reliability is quantitatively measured by the System Average Interruption Duration Index
(SAIDI) which asses the mean power system interruption per customer connection over
one year. The SAIDI and other reliability metrics that capture the interruption frequency
and load-normalized interruption measurements are defined in IEEE 1366.

Different power grid topologies exist, which differ in terms of structure, reliability, and
operation characteristics.

• Within radial power networks, one substation supplies all connected customers via
a radial tree topology, where the substation is the root node of the tree. Hence, there
exists only one single path from the supplying node (transformer) to each customer.
This topology is simple and cheap to build, and faults can be detected easily. How-
ever, in case of a line failure, all customers connected via this line are affected.

• In a ring network, always two paths between the supplying substation and each cus-
tomer exist, whereby the connections are organized as a ring. Such a ring network
can also span different voltage levels, e. g., where the ring is closed via a second
substation that interconnects sub-grids via the upper voltage level. Reliability drasti-
cally improves with the ring topology, because in case of a single line or substation
failure, all customers are still served, potentially with reduced power quality. For
fault-tolerance reasons, DSOs typically operate their low-voltage power grids follow-
ing the n−1 criterion, where every customer is supplied even in case one substation
or a particular line fails. Therefore, low-voltage networks are often built with ring
topology but are operated with an open connection like a radial network. In this way,
faults can be identified fast and supply can be re-established via this redundancy.
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Figure 2.1: Power system from an architectural perspective including the power transmis-
sion and distribution grid. (Figure made by Philipp Danner CC BY SA 4.0)

• Meshed networks are the most general classification, where at least one connection
between the customer and the supplying substation must exist, but the network can
also contain several cross-connections to improve reliability. This topology is the
most expensive one, and it is hard to track power system asset failures. Therefore,
meshed networks are typically only used for well-monitored medium to extra high
voltage networks, where failure safety is required.

2.1.1 Flexibility in Power Systems

The power grid is historically operated with the paradigm supply follows demand, where
central generators produce as much power as loads consume at any moment in time. How-
ever, with increasing volatile renewable generation, this is not possible anymore and the
demand side needs to adapt to the generation. This leads to a paradigm shift towards de-
mand follows supply, which involves demand-side management mechanisms. In this con-
text flexibility on the customer and generation side plays an increasingly important role. In
literature, there exist various, slightly different definitions of operational flexibility in power
systems depending on the involved stakeholders [69, 111, 168, 178], however mostly the
term flexibility relates to the variability and uncertainty of power generation and demand.
Degefa et al. [40] express the idea behind flexibility in power systems very well in an ab-
stract manner:
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“The ability of power system operation, power system assets, loads, energy
storage assets and generators, to change or modify their routine operation
for a limited duration, and responding to external service request signals[,
without inducing unplanned disruptions].”

Thereby, the authors explicitly exclude load shedding, e. g., reducing peak load without
shifting the energy consumption to a different time, and DRES curtailment from being a
flexibility, which from a technical point of view is quite limiting. For example, this excludes
flexibility originating from sector coupling, where a heating system can switch the energy
source from electrical power to gas in order to provide flexibility in the power system, or
a PHEV uses the combustion engine to cover the next trip distance when the battery is
not sufficiently charged. However, the idea of excluding flexibility measures that disrupt
routine operations is in line with the focus of this thesis to provide service quality for smart
grid applications. Therefore, this thesis does not fully follow their definition and neglects
the aspect of inducing unplanned disruptions. Nevertheless, the proposed methods still aim
to not cause unplanned disruptions to guarantee high QoS while providing flexibility to the
power grid.

A flexibility resource is an asset that can provide flexibility. Flexibility resources can be
further classified according to their availability [168]:

• Potential flexibility resource is a flexibility resource that exists physically but is nei-
ther monitored nor controllable, e. g., nuclear fusion, which is physically known but
not yet under control.

• Actual flexibility resource is a potential flexibility resource that is monitored and
controllable, and therefore can technically be used, e. g., public EV charging, which
is usually monitored and controllable, but charging operators focus on charging and
not on the flexibility potential from the EVs.

• Flexibility reserve is an actual flexibility resource that can be utilized from an eco-
nomical point of view, e. g., a BESS or EV charging at private households, whose
main purpose is to provide flexibility for local optimization.

• Market-available flexibility reserve is a flexibility reserve that can be procured from
power and AS markets, e. g., a gas power plant that adopts to market signals.

Only market-available flexibility reserve and flexibility reserve are interesting because
power grid operations can only interact via the market and smart grid applications will
only utilize flexibility if it is economically beneficial for the power grid operator and the
flexibility provider.

Flexibility can be quantified by the so-called flexibility trinity that specifies the ramping
capacity, power capacity, and energy capacity [113, 168]. Thereby, the energy capacity is
the integral of the power capacity, which in turn is the integral of the ramping capacity. The
sign of the amplitude of the power capacity defines the direction of the flexibility, which
can be either positive or negative. Positive flexibility refers to decreasing from the routine
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Figure 2.2: Important characteristics of flexibility resources (power capacity, ramping ca-
pacity, energy capacity, rebound effect and timing aspects) according to [40].

consumption profile, e. g., by discharging an Energy Storage System (ESS), whereas nega-
tive flexibility refers to increasing from the routine consumption profile, e. g., by charging
an ESS. Note that power capacity, and therefore ramping and energy capacity, is not limited
to real power P in W (Wh−1 and Wh), but can also be reactive power Q in VAr. In this
case, energy capacity can be neglected, because reactive power is supplied by inductive
and capacitive effects and does not involve any energy storage.

In addition to the main three characteristics defined by the flexibility trinity, a flexibility
resource can have additional characteristics depicted in Figure 2.2. After receiving an ac-
tivation signal, there might be a reaction duration in which the flexibility resource stays
with the routine profile. After that, the ramp-up duration starts, where the power capac-
ity increases up to a maximum of the power capacity, limited by the ramping capacity of
the flexibility resource. Note, that this ramp rate is not necessarily linear as depicted in
Figure 2.2. The energy capacity limits the flexibility duration, after which the ramp-down
duration starts. After flexibility provision, the flexibility resource might require a recovery
duration before providing its service again. During this phase, energy bounded flexibility
can cause a rebound effect, e. g., recharge an empty battery for the next use. Note that with
reactive power, no rebound effect is expected, because its energy capacity is not bounded.

2.1.2 Ancillary Services

The European Network of Transmission System Operators for Electricity (ENTSO-E) de-
fines ASs to refer “to a range of functions which TSOs contract so that they can guarantee
system security. These include black start capability (the ability to restart a grid following
a blackout); frequency response (to maintain system frequency with automatic and very fast
responses); fast reserve (which can provide additional energy when needed); the provision
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Figure 2.3: Balancing reserves and their respective time horizons: Inertia, FCR, aFRR,
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of reactive power and various other services” [48]. However, from DSOs’ perspective,
there are additional ASs that are required for the operation of the power distribution grid,
e. g., congestion management, voltage control, and harmonic mitigation. These ASs can be
provided with flexibility from (distributed) flexibility resources supplied by smart convert-
ers in the future, as investigated in the European research project EASY-RES [129], where
ramping, power, and energy capacity are defined according to the power grid requirements.

Balancing services that offer frequency response and fast reserves are in general categorized
by the time horizon of their availability, as depicted in Figure 2.3.

• Inertial response, also known as frequency response reserve, is traditionally provided
by rotating masses, where a fast dip or increase of the power systems’ frequency re-
sults in a direct response of the rotating masses, which slow down or speed up to
reduce the rate of frequency change. In future power systems without big mechan-
ical generation units, virtual inertia must be provided by converter-based renewable
generations that are equipped with fast ESS, e. g., super-capacitors [126].

• Frequency Containment Reserves (FCR), which is also known as primary reserve,
must be available at full capacity latest 30 seconds after the frequency event occurs
and must cover a duration of up to 15 minutes. The task of this balancing service
is to keep the power system’s frequency within the desired bandwidth. This service
may be provided by EV charging in the future [114, 116, 120].

• The automatic Frequency Restoration Reserves (aFRR), also known as secondary
reserve, is automatically activated and replaces the FCR gradually after 30 seconds.
Its full capacity is required to be provided at the latest five minutes after the frequency
event. Traditionally, hydro-storage and gas power plants are the main contributors
to this reserve, however, Virtual Power Plants (VPPs) consisting of bio-gas power
plants, combined heat and power plants, and BESSs can provide this service in the
future [63, 117, 118, 172].

• In contrast to aFRR, the manual Frequency Restoration Reserves (mFRR), also
known as tertiary reserve, is manually or semi-automatically requested by the sys-
tem operators. Its full capacity must be available latest after 15 minutes.
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• Finally, Reserve Replacement (RR), also known as dispatch, is required to take over
from the former frequency reserves at the latest after one hour and re-schedules gen-
eration units to meet the new demand-supply balance. In the future, this can also be
achieved by re-planning customers’ flexibility.

FCR, aFRR, and mFRR are traded on the European energy markets with both positive and
negative quantities, defined similarly to positive and negative flexibility. In Germany, the
trading window of aFRR is equal to four hours, in which the traded energy reserve must be
provided. In most countries, there are two different types of remuneration for the balancing
service. First, for keeping the capacity available (capacity price) and, second, for actually
activating the balancing service (energy price) in case of a frequency event.

2.2 Notions of Quality of Service, Quality of Experience,
and Fairness

Quality of Service (QoS) is the measurement of the overall performance of a service and was
initially introduced for telecommunication services by International Telecommunication
Union (ITU) in 1994. In the current valid recommendation ITU E.800, QoS is defined as
the “Totality of characteristics of a telecommunications service that bear on its ability to
satisfy stated and implied needs of the user of the service” [86]. This definition implies
that characteristics of the service, which can be measured quantitatively or qualitatively,
need to match the users’ requirements towards the service, and hence involve the user to
decide about the service quality. The QoS criteria can be differentiated between network
performance (intrinsic QoS) and non-network performance, where the former measures
network parameters, such as packet loss rate, bit error rate, average bit rate, throughput,
transmission delay, availability, and jitter. Non-network performance can include service
mean repair time, provisioning time, and billing process. The ITU further specifies four
viewpoints of QoS, also depicted in Figure 2.4:

(i) The customer’s QoS requirements can be specified in non-technical terms and de-
scribe the resulting end-to-end service quality a customer may expect from the ser-
vice, without knowledge of the internal network design.

(ii) QoS offered by the service provider expresses the values of the QoS parameter that
the service provider plans to deliver. This may include non-technical definitions, as
well as technical measures that relate to intrinsic QoS parameters that can be part of
service level agreements.

(iii) QoS achieved by the service provider is the statement of what QoS parameters are
finally delivered to the customer measured in the offered QoS parameters.

(iv) QoS perceived by the customer finally is a statement of the customer’s satisfaction
with the service typically measured in non-technical terms, such as customer surveys.

To control the QoS parameter, network standards define QoS classes, sometimes also called
Class of Service (CoS), where “services belonging to the same class are described by a
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Figure 2.4: The four viewpoints of QoS according to ITU G.1000. On the provider side,
(non-)achieved QoS parameter may directly influence the QoS offers. Furthermore, the
perceived QoS by the customer may influence their requirements, e. g., perceived QoS may
become expectations as part of new requirements.

specific set of parameters, which can be expressed qualitatively or quantitatively” [158].
These parameters need to be met for high performance of the application, and relate to traf-
fic requirements and also intrinsic network parameters. Typically, service classes in net-
working are categorized by elastic/non-interactive (e. g., file download), elastic/interactive
(e. g., web browsing), non-elastic/non-interactive (e. g., video streaming), and non-elas-
tic/interactive (e. g., voice or video conferences). Some applications may additionally
specify the required network bandwidth and symmetry of communication. The different
standardization entities (ITU, IETF, IEEE, and 3GPP) define slightly different QoS classes
for their protocols that arise from specific traffic requirements and characteristics. These
definitions do not always map straight forward to each other, however, there exist efforts
for mapping between them to improve interoperability [158].

Quality of Experience (QoE) is defined as “The degree of delight or annoyance of the user
of an application or service” [24]. QoE (assessed QoS) relates (not necessarily linear)
to QoS parameters and additionally integrates the personality and the current state of the
user. According to [74], a generic QoE model Q, as in Equation (2.1), can be defined as a
function of QoS parameters and other influencing factors x to the QoE value y.

Q : x→ y = Q(x) ∈ [L;H] (2.1)

L and H are the lower and upper boundary of experience values, respectively, e. g., L = 1
(bad quality) and H = 5 (high quality), which is typically used in the 5-point Mean Opinion
Score (MOS). These QoE models are often derived from user surveys, but can also be
metrics on the QoS parameters, e. g., median or percentiles.

The following two examples will help to understand the difference between QoS and QoE
in the EV charging domain.

• An EV that can fully recharge its battery during the available charging time, between
arrival and departure, receives a high QoS because the charging service succeeds.
Logically, if a charging process cannot finish before departure, the QoS is lower.
Hence, the perceived QoS is coupled with the energy requirement of the charging pro-
cess, which relates to intrinsic QoS metrics that measure the network performance,
such as the charging rate. Now, considering the context of the EV user, the QoE
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may differ with respect to his next trip. If the EV has recharged enough energy to
reach the next destination (independent of whether the charging process has finished
or not), the QoE is obviously higher than if an additional charging stop is required
during the next trip. Although the driving distance of the next (unplanned) trip does
not affect the perceived QoS of the charging process, it may influence the QoE.

• In a second example, two EVs connect to charging stations that share the same power
grid resource, where both EVs have equal charging requirements (required amount
of energy and available charging time) and hence are in the same QoS class. In case
the charging rates need to be reduced due to power grid limitations, both charging
processes receive the same lower charging rate, which equally reduces the intrinsic
QoS parameter for both. Note, with this approach proportional QoS fairness on the
charging rate is achieved. However, if the two EV users have different grid con-
nection capacities (or maximum charging capacity specifications of their wallboxes),
their QoE may differ. Assuming the charging power is limited to 11 kW per EV ,
one user with 22 kW peak charging power reaches only 50 % of utilization, whereas
the other user may charge with his full peak charging power of 11 kW. Obviously,
only the charging process of the first user lags behind expectation, which results in
lower QoE, regardless the fact whether the actual charging service is finished in time
or not (perceived QoS). This example shows that a fair QoS distribution must not
necessarily result in fair QoE.

Both QoS and QoE respect the overall measure of user satisfaction but do not express how
fair the achieved metric scores are distributed among the participating users. Especially if
the maximum quality level cannot be achieved, e. g., due to power grid limitations in the
case of EV charging, every user should receive a fair share of the limited service. It is
important to note that fairness can be defined on all different levels of QoS. However, a
proportionally fair intrinsic QoS parameter may not result in fair perceived QoS, and vice
versa. On the other hand, increasing fairness may reduce the overall achieved mean QoS
and QoE scores. Hence, resource allocation algorithms need to balance between QoS and
QoE scores, and fairness.

In communication networks, the term fairness relates to fair access to a shared communi-
cation medium, such as the air in wireless communication. Access to a shared medium is
typically modeled with queues and a scheduler. In General, application systems for queues
can be classified into flow-based and service-based systems [105]. Flow-based queues han-
dle a stream of jobs for each customer and fairness guarantees that competing flows, that
share the same resource, are served equally fair at any point in time. For example, network
routers only see flows of packets assigned to different customers, and fairness is defined on
the network access level because routers do not have insight into the purpose of the packet
stream (hence do not know to which service they belong). On the contrary, service-based
systems only deal with a single job for each customer and, hence, the fairness objective is
limited to the completion of that single job, e. g., in terms of service delay. These queues
typically apply to the application layer, e. g., the download of a remote file via the Internet.

Many definitions for fairness of resource allocations exist for the networking and computer
science context, where the most prominent are outlined in the following.
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• One of the first attempts for quantifying fairness for server load sharing was intro-
duced by Yung-Terng Wang and Morris [173] as the Q-factor (quality of load sharing
factor). This factor combines the overall efficiency and fairness of allocation algo-
rithms and compares the mean job response time against the mean response time
under a global first come first served scheduler, which implements both their defined
goals of not discriminating jobs from particular sources and avoiding servers to be
idle.

• The max-min fairness is a well-known principle in computer networking [87]. A
resource allocation is said to be max-min fair if the bit rate for one flow cannot be
increased without decreasing the bit rate of another flow with a smaller bit rate. The
progressive filling algorithm, also called the water-filling algorithm, uniquely defines
the max-min fairness. Max-min fairness is also known as Generalized Processor
Sharing (GPS), which is known to be unimplementable in the networking domain,
because in packet switching, the minimum size of a packet is fixed and, therefore,
only approximations of the fully equal allocation exits [21, 42, 59, 152].

• The relative and absolute fairness bound, used and analyzed among others in [59,
62, 92, 174], provide an estimation of how fair a system resource allocation is dis-
tributed among different flows. Similar to the Q-factor, the absolute fairness bound
compares the resource allocation of a scheduling policy P with a baseline scheduler,
here the GPS. Since GPS is hard to estimate, researchers tend to use the relative
fairness, which simply compares different flows. The absolute and relative fairness
bound finally calculates the maximum of the absolute and relative fairness of all
combinations of flows and time intervals.

• Proportional fairness [91] is one of the most commonly used fairness criteria in
literature, where the assigned resource ratio to each flow is inversely proportional to
its required capacity. Note, even though proportional fairness was initially designed
for flow-based systems it can also be applied to service-based queuing applications if
the bit rate is not allocated based on the number of flows or their bit rate requirements,
but on other service aware parameters, e. g., the file size of a file to be downloaded.

• The index of fairness [88] (also known as Jain’s index) quantifies fairness of any re-
source allocation to n flows and ranges from 1

n (unfair) to 1 (most fair). The proposed
fairness index for an allocation B = {b1, . . . ,bn} is calculated as in Equation (2.2),
where c(B) is the relative standard deviation c = σ

µ
of all values b1, . . . ,bn.

J(b1, . . . ,bn) =
(∑n

i=1 bi)
2

n ·∑n
i=1 b2

i
=

µ(B)2

µ(B2)
=

1
1+ c(B)

, (2.2)

It can be seen that Jain’s fairness index depends on the input value level [74], hence
allocations with the same standard deviation have a better fairness value when its
mean value is greater. This fact must be considered when analyzing fairness inde-
pendent of the allocation values. Nevertheless, the goal is to reach both high absolute
allocation values and high fairness.
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• The fairness index by Hoßfeld et al. [73, 74] defines the fairness decoupled from the
achieved allocation values and is originally designed to measure the QoE fairness.
Its calculation is given in Equation (2.3), where H and L are the upper and lower
bound of allocation values.

F(b1, . . . ,bn) = 1− σ(b1, . . . ,bn)

σmax
= 1− 2σ(b1, . . . ,bn)

H−L
(2.3)

Note that due to the decoupling from the allocation values, a fair allocation does not
imply overall good allocation values, e. g., even low QoS parameters can yield a fair
allocation if their standard deviation is small.

In addition to the aforementioned fairness definitions, several other notions of fairness exist,
e. g., balanced fairness [22] or worst-case fairness [21]. In the field of game theory, fairness
was introduced as part of the utility function to model human fairness treatment and social
welfare [134].

The difference between flow-based and service-based fairness in the energy domain can be
seen in the example of PV curtailment. On the one hand, flow-based fairness defines that
all PVs are curtailed according to the currently injecting power at any point in time [57, 58,
95, 162], whereas service-based fairness would consider the total losses due to curtailed
PV generation throughout a year [160]. Furthermore, literature uses different definitions
of fairness, among others egalitarian (equal absolute curtailment for all PV systems) [57],
proportional fairness [57, 58, 95, 162], or min-max fairness [57].

In a different application area, authors of [27] propose a fair power allocation for air condi-
tioners in the smart grid, where the power consumption is indirectly controlled by allocating
thermostat settings in each time slot. In this way, ambient temperature and the amount of
power required for the same temperature reduction is decoupled and fairness is defined on
the QoS level of air conditioning (flow-based).

2.3 Electric Vehicle Charging

The general term Electric Vehicle (EV) refers to vehicles that use electric repulsion for
driving. However, several sub-categories with varying configurations exist.

• Battery Electric Vehicles (BEVs) are pure or all-electric vehicles, which contain bat-
tery storage that can only be charged via a charging outlet from an external electricity
source. The battery capacity and maximum charging rate are therefore quite large to
be able to drive long distances and re-charge the battery in a fast manner.

• Hybrid Electric Vehicles (HEVs) are not limited to electricity as the energy source for
repulsion. Some variants of EVs additionally contain an internal combustion engine
and the electric motor is mainly used for fuel saving, e. g., the electrical motor is
used for acceleration from stand while the combustion engine is operated at a more
efficient rotational-speed range during driving. Others have only one electrical motor,
but use a combustion engine or hydrogen fuel cells for electricity generation and a
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Table 2.1: Charging modes and the corresponding maximum charging current and charging
power according to IEC 61851-1

Mode Type Current [A] Power [kW]
single-phase three-phase

1 (slow charging) AC 16 3.7 11
2 (slow charging) AC 32 7.4 22
3 (slow and quick charging) AC 63 14.5 43.5
4 (fast charging) DC 200 80

small battery or supercapacitor as an energy buffer. Sometimes, the internal battery
is only charged by recuperative braking.

• Plugin Electric Vehicles (PEVs) have external charging outlets to charge their internal
batteries. This category includes all BEVs and some variants of HEV , called Plugin
Hybrid Electric Vehicles (PHEVs).

Because the focus of the smart grid applications is on power grid-connected EVs, this thesis
refers to PEV when using the acronym EV in the remainder of this document. Furthermore,
the thesis targets QoS and fairness for EV charging, where user involvement is required,
hence EVs are limited to electrical passenger cars. Nevertheless, the proposed methods
might also apply to other types of EVs, like trucks, buses, or bikes.

2.3.1 Charging Modes and Communication Protocols

All PEVs can be charged from the electrical power grid at charging stations that support
different charging modes, also called Grid to Vehicle (G2V). Some modern EVs support
Vehicle to X (V2X) capabilities, including Vehicle to Grid (V2G), Vehicle to Home (V2H),
and Vehicle to Load (V2L). This thesis however focuses on charging-as-a-service, hence
discharging of an EV is not discussed. Table 2.1 shows the charging specifications defined
in IEC 61851-1, where charging modes 1 and 2 apply to regular AC electricity sockets
(mode 2 with additional monitoring and protection function). As most common for AC
charging, mode 3 requires a permanently installed specific charging socket, which usually
can be found at public charging stations or private wallboxes. Mode 4 uses a DC charging
socket and requires an AC/DC converter at the charging station, which is uncommon for
private wallboxes at home. In addition to the charging modes defined by IEC 61851-1,
upcoming ultra-fast charging stations with ChaoJi connectors support up to 600 A and
1500 V on the DC side, reaching charging powers of more than 900 kW [159].

The charging needs of EVs are typically divided into home charging, workplace charging,
and public charging, where the latter mostly relates to DC (ultra-)fast charging. Charging
facilities at home locations and workplaces are mostly AC charging stations with limited
charging power, typically not more than 22 kW. Home charging refers to the use case
where people plug their EVs after arriving home in the evening and require a fully charged
battery until departure, usually the next morning. This offers large flexibility at which
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Figure 2.5: Typical CCCV charging behavior of lithium-ion batteries.

time the EV can be charged. However, trips that occur shortly after arriving home require
immediate charging, which must be respected by smart charging control algorithms to keep
EV drivers happy. Similar flexibility is offered by workplace charging, where EVs park
for approximately eight hours at parking lots during the day. Because charging can be
seen as an extra service to the employees with potentially reduced charging fees, there is
no strict requirement to fully charge the connected EVs, hence charging control has more
flexibility and can prioritize for example the company fleet. Public charging goes along
with high charging power and energy demand because EV drivers want to resume their
trip with maximum charged energy during a typically short stay. The public (ultra-)fast
charging has the lowest flexibility in shifting charging processes. However, due to the rated
high charging power, AS support can be realized, e. g., reactive power supply or voltage
regulation. Uni-directional EV charging (only G2V) can participate in the AS market to
provide positive and negative reserve power by reserving aggregated charging flexibility
from an EV fleet, as proposed in [148, 149].

Besides charging equipment characteristics, the EV itself can have additional charging lim-
itations originating from its Battery Management System (BMS) or the battery chemistry.
Lithium-ion batteries for example, which are usually used in EVs, are typically charged with
the so-called Constant-Current Constant-Voltage (CCCV) charging pattern, as depicted in
Figure 2.5. First, the battery charger supplies constant current, while the internal cell volt-
age continuously increases during charging until the maximum cell voltage is reached. For
lithium-ion batteries in EVs, this is usually above 80 % of the battery SoC in case of low
charging power of around 22 kW [147], and even above 90 % in case of 11 kW charging
power [68]. Afterward, the voltage is kept constant and the supply current decreases until
the battery is fully charged. This phase is called the saturation phase of the battery. Ad-
ditionally, the BMS may restrict the usable battery capacity between 10 % to 90 % of the
factory storage capacity to avoid deep discharge and overcharging, which both can harm
the battery State of Health (SoH). Ambient temperature, cooling technology, and battery
core temperature may further influence the actual charging power of an EV . Because this
thesis aims to provide charging-as-a-service from the charging station and power grid point
of view, EV-specific internal EV restrictions are not considered. The used charging service
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Table 2.2: PWM signal and corresponding maximum charging current per phase according
to IEC 61851-1.

PWM [%] Imax [A]

x < 3 No charging allowed
3 ≤ x ≤ 7 High-level communication, e. g., ISO 15118
7 < x < 8 No charging allowed
8 ≤ x < 10 Imax = 6A

10 ≤ x ≤ 85 Imax = x ·100 ·0.6A
85 < x ≤ 96 Imax = (x−64%) ·100 ·2.5A
96 < x ≤ 97 Imax = 80A
97 < x No charging allowed

parameters include arrival time, departure time, and required energy to be charged, and are
explained in more detail in Section 3.2.

Standards such as the IEC 62196 specify charging plugs and IEC 61851-1 specifies the
communication with the EVs via these connectors. The AC Type 2 charging connector,
specified in IEC 62196-2, applies for charging modes 1 to 3 and is the most widespread AC
charging plug in Europe. The connector has one or three-phase conductors, a neutral and
Protective Earth (PE) conductor, a Proximity-Pilot (PP), and a Control Pilot (CP), which
together are used to communicate with the EV . In basic communication mode, the charg-
ing station provides a voltage of +12 V between CP and PE. If an EV is connected, a PWM
signal of 1 kHz is provided by the charging station, which specifies the maximum charging
current for the EV according to Table 2.2. On the other side, the EV can modify the resis-
tance between CP and PE to share its status with the charging station. Different resistances
change the voltage amplitude and can encode the following six states: standby (+12 V),
vehicle detected (+9 ± 1 V), ready for charging (+6 ± 1 V), with ventilation (+3 ± 1 V), no
power (0 V) and error (−12 V). A cable can further limit the maximum current capacity
by defining a constant resistance between PP and PE, which should reflect its conductor
diameter.

On top of the basic communication between the charging station and the EV via PWM,
there exist more advanced protocols, e. g., bi-directional high-level communication spec-
ified by ISO 15118. This standard supports advanced features that support use cases to
identify, authenticate and authorize EVs, start, stop, and control charging processes, and
provide reactive power compensation or V2G support. The bi-directional communication
is based on the Open Systems Interconnection (OSI) model, where the Internet Protocol
(IP) based communication is either wired (via Power-Line Communication (PLC) over the
CP conductor according to HomePlug Green PHY) or wireless (IEEE 802.11n). Messages
are exchanged in Extensible Markup Language (XML) format with Efficient XML Inter-
change (EXI) encoding. For controlling an EV charging process the most important feature
in ISO 15118-2 is the charging profile negotiation mechanism between the EV and the
charging station. Thereby, the EV request possible charging parameters that define charg-
ing limitations, e. g., from the power grid, and selects a suitable charging profile via a power
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26, 51, 75, 140, 167]

Figure 2.6: Categorization of literature in the domain of EV charging that considers QoS
and fairness aspects. The proposed methods in Chapter 3 fit to the two highlighted online
EV coordination categories.

delivery request. In case the limitations at the charging station change, a re-negotiation is
initiated. Furthermore, the EV can transmit its planned departure time and energy require-
ment along with the charging parameter request, as well as BMS-specific parameters, e. g.,
at which SoC fast charging is not possible anymore. During charging, the charging sta-
tion can control the EV charging process by modifying the target power values. This may
also include reactive power in the case of AC charging, as introduced in the extension of
ISO 15118-20. Overall, this allows power grid operators to request reactive power from the
EV charging processes to support the power grid in terms of voltage control and reactive
power balance.

2.3.2 Literature Overview

Many publications in literature deal with smart charging of EVs targeting the mitigation
of power grid issues as their main objective [8, 9, 11, 28, 29, 38, 41, 94, 109, 115, 142].
However, the main focus of this thesis is to highlight the impact of smart EV charging on
the users’ expectations, hence the main objective is to make EV drivers happy under given
power grid constraints. Literature on EV charging problems that optimize for or at least
discusses obtained results with respect to QoS and fairness can be categorized as given in
Figure 2.6.
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One research direction, which considers service quality aspects for the EV driver, tar-
gets charging station sizing and operation of smart charging stations with auxiliary ESSs.
Thereby, the main concern is the probability that an EV is blocked at a charging station [19,
20, 176]. In particular, authors of [20, 176] try to improve the QoS by introducing different
QoS classes, where higher service levels correspond to higher payment by the EV driver,
whereas authors of [19] optimize the revenue of the charging station operator by extract-
ing the optimal size of the charging station and its local battery storage using a continuous
time Markov chain that is used to determine the blocking probability. A different defini-
tion of QoS for public smart charging stations is considered in [66], where QoS includes
the continuity of power supply, the delay of EVs queuing for the charging service, and the
overall charging time. Again, the main objective is battery sizing of local storage systems
but additionally, all EVs can supply energy back to the charging station. In [85], photo-
voltaic and battery sizes are optimized for business charging, where EV availability highly
correlates with photovoltaic generation. Their optimization considers QoS as the ratio of
charging energy delivered to charging energy demanded, where a fairness factor influences
the charging rate of each EV based on its SoC.

The second research direction deals with the coordination of distributed EV charging,
which can be divided into offline planning problems and (real-time) online algorithms.
The main assumption of offline planning, sometimes called day-ahead scheduling, is that
future charging processes are known in advance or at least can be forecast to a reason-
able extent. Most of these papers perform day-ahead optimization using an optimization
problem, e. g., MILP [56, 89], Mixed Integer Non-Linear Programming (MINLP) [75], or
distributed optimization with Alternating Direction Method of Multipliers (ADMM) [164].
In particular, authors of [56] use a MILP for day-ahead planning of charging processes at
business parking lots where the optimality is determined by a weighted linear objective
function that considers the fair share (social welfare on the final SoC), total charging cost,
peak power at the grid connection, and three-phase grid imbalance. Thereby, the QoS for
the EV user is measured only based on the SoC of the battery. Additionally, they propose
a priority queuing algorithm for the online control that utilizes knowledge from the day-
ahead schedule and prioritizes with respect to the same four objectives. The MILP problem
in [89] uses V2G capability to plan the charging and discharging of EVs to flatten the duck
curve. Thereby, battery degradation as the main quality metric is minimized. The MINLP
problem in [75] aims for planning EV charging processes with respect to active and reac-
tive power supply for voltage regulation, which in turn is performed online via a parallel
consensus mechanism. Thereby, the goal is to optimize the profit of each EV with fair
pricing based on the involvement level. Authors of [164] propose a distributed version of
their optimization problem using ADMM while aiming for proportionally fair allocation of
charging power considering voltage drops at the feeders.

Many methodologies are applied for online EV charging coordination. Some of them are
discussed in more detail since Chapter 3 proposes a queuing and a probability-based al-
gorithm as highlighted in Figure 2.6. The QoS in [52] is measured by a utility function
on the charging rate and the demand-response charging control is adapted from congestion
pricing from the networking context using a willingness-to-pay factor. The bidding model
proposed in [71] measures the comfort of EV drivers only by the SoC at departure.
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Multiple papers consider online optimization problems, sometimes with distributed solving
methods [6, 14, 15] or decentralized formulations [84]. Authors of [14, 15] describe the
proportionally fair distribution of available power capacity as an optimization problem that
can be solved in a distributed manner via a decomposition of its dual problem. The satisfac-
tion of an EV user is defined depending on the current charging power. Contrarily, the fair
charging capacity allocation in [6] considers the laxity of a charging process as weight in
an optimization problem. To reduce the impact of users that cheat with their departure time,
they propose to integrate the user’s reputation into the weights, such that people who esti-
mate their departure time similarly well obtain the same fair share of power capacity. The
optimization problem in [144] measures the charging service performance by the charged
energy and additional aims to avoid battery wear as one of its objective functions. The
authors further propose a heuristic to reduce the number of integer variables in the prob-
lem formulation to increase solving speed required for online operation. Besides providing
real EV charging data [100], authors of [101, 102] propose a central Model Predictive
Control (MPC) optimization problem for EV charging in parking garages. The objective
function of their framework is configurable and contains among others fair charging rate
distribution and prioritization to finish charging all EVs. Their approach is compared to
Earliest-Departure-First (EDF), Least-Laxity-First (LLF), and a round-robin method, all
of which perform very similarly to the analysis in Section 3.5.

Other authors apply game-theoretic concepts to minimize the cost of the charging processes
per EV in a non-cooperative game framework [170]. They further propose a distributed
generalized Nash equilibrium-seeking algorithm. Authors of [77–79] propose fuzzy logic
to solve the charging power allocation problem while focusing on the SoC as the main QoS
metric for the EV driver. The multi-objective fuzzy controller in [7] targets user require-
ments by the waiting time, dynamic energy prices, the battery SoH, and required SoC for
the next trip, as well as local renewable generation from PV . Their fuzzy controller is sup-
ported by Particle Swarm Optimization (PSO) and a Neural Network (NN) to find a global
optimal solution and cope with the inherent complexity of the controller.

The approach in [179] shows how available power capacity can be shared fairly using a
weighted fair queuing scheduler. Their approach is based on packetization of the charging
process of EVs, where each packet represents the permission to charge for the next time
slot. These packets are queued by the single charging processes to the proposed scheduler,
which computes the packet assignment weight based on the SoC at arrival. Demand and
supply mismatch defines the available power in their solution, not considering the conges-
tion of the underlying power grid topology. The QoS is measured by the ratio of delayed
charging processes. In [180], the same authors compare different queuing policies from the
networking context for distributing the available power to charging processes, e. g., round-
robin, First-Come-First-Served (FCFS), or EDF. QoS is again evaluated by the charging
delay. More recently, authors of [67] apply weighted fair queuing to any type of deferrable
loads in power systems. Thereby, they calculate the weights based on the required wattage
and remaining waiting time.

In [51], an online QoS-aware admission control algorithm is introduced that makes use of
different QoS classes, where QoS relates to the overall charging time and finishing charg-
ing faster implies a higher QoS. A different approach in [167] applies the Additive Increase
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Table 2.3: Overview of QoS parameters for EV charging processes in the literature.
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[5, 12, 56, 85, 137] ✓

[26, 78] ✓ ✓

[144] ✓ ✓

[71] ✓ ✓

[89] ✓

[18, 75, 170] ✓

Multiplicative Decrease (AIMD) principle to EV charging, where the quality of power ser-
vice is defined such that the voltage drop must be kept stable, but proportional fair charging
rates must be provided to all EVs, regardless of their location in the grid. As a result, QoS
is defined as instantaneous power delivery. The focus of the approach in [12] is the power
quality of the power grid but implicitly QoS is defined in terms of energy delivered to the
EV without differentiating the actual energy requirement of the user. Their Transmission
Control Protocol (TCP)-inspired approach results in a fairer distribution than a pure power
quality-aware algorithm from [11]. A smoothed least laxity first algorithm is introduced
by [26], which improves the classical LLF method such that potentially oscillating charg-
ing signals are smoothed. Thereby, the algorithm aims for proportional fair one-step-ahead
laxity and is evaluated with respect to the success rate of the single charging processes.

Table 2.3 summarizes the different definitions of QoS and QoE metrics that are used for
charging power allocation or algorithm evaluation in the literature. Most research focuses
only on one single quality metric and no paper provides a broader overview of how their
charging power allocation algorithm impacts the users’ expectations. Therefore, Chapter 3
introduces a comprehensive set of QoS and QoE metrics that not only measure the quality
of the charging process but also how users may perceive the service. Note that in this
thesis charging costs are not considered as a charging service quality metric, since EV
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charging power allocation is considered to be a power grid service, for which no variable
compensation is provided to the users. Furthermore, battery degradation is out of scope
because with only uni-directional EV charging no large additional impact on the SoH can
be expected apart from the anyhow planned charging process of the user.

Literature applies many notions of fairness, among others (weighted) proportional fairness
on one-step ahead laxity [26] or charging power [14, 15, 67, 144, 164, 167]. Others refer
to Jain’s fairness index [6, 76], define a geographic fairness measure [67], or aim for social
welfare [56]. This thesis measures fairness as the deviation of each quality metric between
the EV charging processes to ensure that all receive the same fair service.

2.4 Home Energy Management Systems

Home Energy Management Systems (EMSs),3 in the following referred to as EMS, are used
when multiple flexible appliances are managed behind-the-meter. In most cases, the goal
is to optimally utilize local flexibility provided by controllable devices to reduce the to-
tal energy cost or to automatically react to DR signals from the power grid. Home EMSs
are sometimes integrated with smart home and building automation, which among others
provide control of flexible appliances, occupancy detection, and sensor data for energy op-
timization. Furthermore, EMSs usually operate their control loops in the range of seconds,
e. g., the open source software OpenEMS [54] uses a default cycle loop of 1 s.

2.4.1 Flexibility and Controllability

Electric Vehicle (EV) charging, as discussed in the last section, is one of the appliances with
the largest flexibility in private households due to comparably high energy consumption,
high flexibility in time, and controllability. Flexibility characteristics and relevant protocols
are already discussed in the last section.

Furthermore, BESSs, in the following referred to as ESSs, are usually installed at private
households to store energy from local PV installations for later use. These systems contain
several DC battery cells that are connected to an AC/DC converter that usually uses field
bus protocols for communication, e. g., Modbus over TCP. On top, manufacturers either
define proprietary registers or apply application-layer data models such as SunSpec, which
describes vendor-independent Modbus register mappings for converters and ESSs. With
the Battery Storage Device Model (802), SunSpec includes a BESS-specific data model that
can communicate nameplate ratings, SoC level, and settings as well as heartbeat messages
with its basic implementation. Specific models exist for different storage technologies,
e. g., redox flow batteries, which offer more advanced battery pack-specific monitoring and
control, e. g., cell balancing. The converter can be controlled by the Basic Storage Control
Model (124), which offers functionality for requesting real power (charge or discharge)
from the battery.

3Should not be mixed with EMS from the context of transmission system operation, where EMS refers to
computer-supported tools for monitoring, control, and optimization functions.
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Stationary ESSs in private households have typically a smaller storage capacity than EVs.
Similarly, their charging and discharging limits are lower, since fast charging is not required
and these batteries only need to supply the usual load patterns of households, which are
mostly only a few kilo-watt. The reaction duration and ramping capacity of ESS are not
limiting factors for energy optimization, which is typically applied in a time resolution of
several seconds. BESSs even qualify for ASs, due to their fast reaction time [63, 117]. Since
ESSs are mostly used to buffer energy from local PV generation and supply stored energy
during the night to minimize electricity purchase, the ESS is usually fully charged during
a sunny day. This limits the actual flexibility of an ESS without loss of service quality to
only shift the charging of the battery in time during PV surplus supply.

Apart from EVs and ESSs, heat pumps and white goods, e. g., dishwashers, washing ma-
chines, or air dryers, may offer flexibility for energy optimization. However, their actual
power consumption cannot always be controlled directly. E. g., heat pumps with the Smart
Grid ready label – a certificate valid in Germany, Austria, and Switzerland – support up to
four operation modes: Power off (duration of 10 min to 120 min; maximum three times a
day), normal operation (following heat controller logic), amplified operation (suggestion
to consume more electrical energy; minimal duration of 10 min), forced operation (includ-
ing increased heat set point; minimal duration of 10 min). Similarly, white goods, such as
washing machines, can only be controlled by their start and finish time, e. g., using EEBus,
but not by their actual power consumption.

From these flexible appliances, only EVs and ESSs are considered in this thesis for EMS
energy optimization, since heat pumps and white goods provide smaller flexibility and
lower control capabilities. Nevertheless, flexibility provision-as-a-service can theoretically
utilize any kind of local flexible appliances in Chapter 4, as long as their flexibility potential
can be implemented within the MILP formulation of the EMS.

2.4.2 Literature Overview

Many papers in literature [17, 53, 72, 104, 112, 123, 135, 136, 155] model the EMS using
a Linear Programming (LP) or MILP problem that optimizes the local flexible assets to
various objectives, e. g., cost, sustainability, or users’ comfort in case the heating domain is
included. Some papers target multiple user satisfaction metrics at once by applying meta
heuristics, e. g., NSGA-III [43], and others consider uncertainty using robust optimiza-
tion [136]. However, most of these papers do not consider the aggregation and scheduling
of external flexibility requests, as discussed in Chapter 4.

The aggregation and disaggregation of distributed flexibility resources are intensively dis-
cussed in the literature as well. Some papers disaggregate power flexibility requests in
a single time slot, which is often used for online flexibility disaggregation, while others
schedule the flexibility for multiple time slots at once, which is usually applied for day-
ahead scheduling. An overview of applied methodologies is given in Figure 2.7. Most of
these papers do not consider power grid constraints, focus only on schedule feasibility, lack
detailed modeling of home EMSs, or aim for a single objective, e. g., cost minimization for
the aggregator or the individual participants.
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Figure 2.7: Categorization of literature in the domain of flexibility aggregation of dis-
tributed EMS that considers QoS and fairness aspects. The proposed methods in Chapter 4
fit to the two highlighted categories.

Authors of [165] propose a peer-to-peer market as a multi-agent system, where ESSs are
used to optimize the energy prices and customers’ utility of the individual agents. Thereby,
the DSO can employ additional congestion prices to avoid line congestion. The optimiza-
tion problem defined in [166] aims for economic dispatch at an energy community with
flexible assets, among others EV charging, that minimizes the aggregated energy cost while
avoiding disutility due to delayed charging processes. To tackle uncertainty in the model,
a multi-agent Markov Decision Process (MDP) is defined that infers an action for the next
time interval based on the previous state that minimizes the objective function. Since the
number of possible states grows exponentially, a NN is trained on a set of state-action tuples
using the dual problem due to its lower number of decision variables.

The proposal in [65] aims to schedule available resources to flexible customers (mainly
EVs), while considering grid limitations, respecting the convenience of the users, and re-
ducing the effect of flexibility rebound. The supplying grid feeder, the distributed trans-
formers, and the individual households are represented by agents, which share information
and coordinate the usage of home appliances. Thereby, the transformer agents apply a GA
to assign demand limits to the households such that grid congestion is avoided and the
convenience impact factor is minimized. The results of their demand response approach
are compared to a water-filling algorithm that was proposed for a very similar setup [64].
In [149], EVs that support only unidirectional charging are aggregated into a pool of EVs,
which provides bidirectional flexibility by shifting the charging operation of pending EVs.
Besides quantification of flexibility, the authors propose a disaggregation scheme that aims
to retain positive and negative flexibility using the time-dependent laxity of the EVs, which
is based on the remaining time and energy to be charged.

The approach in [146] considers power grid constraints and optimizes the demand-side
flexibility of customers on multiple time slots in a two-stage approach. In the first stage,
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an aggregator sends day-ahead prices to the customers, who locally optimize for minimal
cost. In the case of grid threshold violations, the second stage introduces an additional
grid usage cost as a set of different incentives, to which each customer optimizes its profile
in a rolling window. Finally, the aggregator chooses the best fitting incentives to utilize
the required flexibility from the households. In a different approach, the LP problem pro-
posed in [128] optimizes all local flexible assets of a household, such as EVs and ESSs
at home EMS. Available flexibility is further utilized at the intraday markets following a
cost-optimal strategy to minimize the local cost of the EMSs.

The multi-objective MILP formulated in [55] optimizes the flexibility of multiple apart-
ments in a building at once. Thereby, the energy cost for each apartment is minimized by
a separate objective function. Fairness on energy cost is achieved by translating this multi-
dimensional objective function into a goal programming problem, where the deviation of
the minimum cost per apartment to a predefined goal is minimized. The central optimiza-
tion problem in [10] minimizes the daily operational energy cost of a smart home network
while prioritizing EV charging. Using their optimization problem formulation, the authors
define flexibility indices for EVs and PV systems to quantify how flexible these assets are.
The EV flexibility index measures the overlapping of flexibility from consumer assets with
EV charging intervals and the PV flexibility index measures the suitability of consumer ap-
pliances to directly consume energy from local PV systems. Both indices help to analyze
clusters of households with respect to their possible flexibility.

The main goal of the LP in [119] is to minimize the total cost for an energy community with
EVs that support V2G functionality. This ultimately leads to an increase in renewable self-
consumption, which is in-line with the Portuguese legislation on self-consumption. Authors
of [112] formulate a MILP for home EMS of an energy community that supports reactive
power provision and unbalanced three-phase operation. Their model implements voltage
constraints on the power grid and utilizes OLTCs together with flexibility from EMSs to
control the voltage in the power distribution grid. The objective function minimizes the
total cost of all households and includes a penalty value for discomfort as some means of
controlling fairness.

In [124, 125], the focus is on energy flexibility planning, where potential flexibility is
characterized by flexibility envelopes in the planning horizon. Flexibility disaggregation
is performed by a linear economic dispatch that minimizes the operator’s cost, not con-
sidering grid constraints. The flexibility of individual assets can also be modeled by con-
vex zonotopes [121], which are inner-approximations of flexibility polytopes for efficient
aggregation using the Minkowski sum. During disaggregation, a convex cost function is
minimized.

Authors of [130, 153, 154] model operational flexibility with so-called FlexObjects, which
encode the variability of an energy profile (controllable amount of energy for multiple time
slots) and the potential to shift this profile in time (time flexibility defined by earliest and
latest start time). FlexObjects of single flexible assets are aggregated by aligning their
possible start times and profile duration. The disaggregation is performed by assigning
the flexibility request proportionally to the energy profiles of the single assets, ignoring
potential power grid constraints and the objectives of the single flexibility providers.
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Table 2.4: Overview of QoS parameters for EV charging processes in the literature.
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Authors of [70] propose a multiple choice combinatorial problem formulation for dis-
tributed energy scheduling in a multi-agent system, where the goal is to select a set of
solutions that optimize towards a target schedule. This method is extended in [150] to
support multi-criteria optimization at the agents, which aim for minimal cost, maximal
self-consumption, and peak shaving. Their solution uses a meta heuristic to find suitable
schedules for the local optimization problems at the agents.

Table 2.4 summarizes the QoS parameters that are targeted in the literature. Additionally,
only very few papers discuss fairness aspects of their approaches, including deviation from
the original profile [55] and discomfort penalty [112].

The literature review shows that plenty of work is done with respect to user satisfaction of a
single EMS. However, disaggregation of flexibility is rarely addressed, mainly focusing on
cost. This thesis discusses flexibility-as-a-service from the perspective of the user, where
scheduling flexibility to distributed EMS respects the goals of the distributed ESS and the
needs of the users, and additionally targets fairness aspects.

2.5 General Assumptions

The thesis makes several assumptions about the power grid infrastructure, the EVs and
their charging equipment, and the distributed EMSs. Common assumptions on EVs are
summarized and discussed in the following. Additional service-specific assumptions are
stated in Sections 3.1 and 4.1.

A1 The discussed solutions in this thesis focus on residential home charging. Neverthe-
less, proposed methods with some adaptions can be applied to workplace charging
as well. Public fast charging stations are of less interest because charging service
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expectations and possible control flexibility differ. Additionally, controlling public
charging stations might not be desired by the charging point operator, whose goal is
to maximize charging point utilization, e. g., by reducing additional parking duration
with extra parking fees.

A2 EVs support only G2V and no V2X functionality. V2G and V2H are typically realized
with DC charging stations, where the converter that needs to support bi-directional
power flow is part of the charging station and not part of the EV . For EV home
charging, typically AC charging stations are used, where the converter is part of the
EV and does usually not support bi-directional power flows. V2L only supports a
single load socket at the EV and is therefore not relevant.

A3 EVs start charging with a given minimum charging current and can dynamically
change their charging current in discrete steps above the minimum charging cur-
rent during the charging process. Thereby, the charging efficiency remains constant.
According to Section 2.3, even the simple PWM signaling of the Type-2 charging
specification supports such a charging control. The controllability of the variable
charging current is also demonstrated in Section 3.6.2.

A4 Whenever a controller changes the charging current, the EV changes its charging
current instantaneously. Because the main idea of the PWM signaling is to limit the
current carrying capacity, the EV must directly apply the charging current reduction.
An increase is also applied within a few seconds as shown in Section 3.6.2.

A5 EV batteries are modeled only by constant current charging without a constant volt-
age phase. This battery saturation phase usually starts earlier with higher charging
currents. In the case of EV home charging, the maximum charging current is be-
low 96 A (32 A per phase), which is supported up to a high SoC by many real EV
models [147].

A6 EVs can configure reactive power behavior during the charging operation to mitigate
local voltage violations. This for example is part of the German connection grid code
VDE 4100, where EV charging equipment must support a reactive power control
strategy. The charging control standard ISO 15118 even supports communication of
real and reactive power profiles to the EV . EVs, which cannot control reactive power,
can only participate in the mitigation of under-voltage events by reducing the real
charging power, which will affect the actual charging service much more.

A7 The future driving and charging requirements of EV users are known. This includes
the arrival and departure time at home, as well as the required energy to be charged.
In the case of home charging, this information can either be inferred from commuting
patterns or via manual input to the home EMS by the user.

2.6 Chapter Summary

This chapter summarizes the relevant background information on the electrical power sys-
tem and its operation. This includes the historical development of interconnected syn-
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chronous power systems and typically used power grid topologies in the power distribution
grid. Furthermore, the term flexibility in power systems is defined, characteristics of flexi-
ble resources are discussed, and the relation between flexibility and ASs, which are required
for stable grid operation, is given. Moreover, the notions of Quality of Service and Quality
of Experience from the networking domain are discussed, where a conceptual connection is
drawn to the use case of EV charging. This is followed by different definitions of fairness
from the networking and compute task scheduling.

In addition, the two smart grid applications under investigation are inspected regarding
their flexibility and means of control. From the EV charging domain, only EVs that charge
directly from the power grid, called Plugin Electric Vehicles, are relevant for this thesis.
Thereby, control methods for AC charging, which is commonly used for the most flexible
EV home charging, are explained by the use of IEC 61851-1 and ISO 15118-2. In the
domain of power flexibility provision from EMS, additionally battery ESS are relevant due
to their large flexibility potential and easy controllability, e. g., via Sunspec. Relevant work
that discusses QoS and fairness aspects in both smart grid applications is categorized and
discussed. Finally, general assumptions on EV charging, which is part of both smart grid
applications under investigation, are stated and shortly discussed.
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CHAPTER 3
Electric Vehicle Home Charging
Service

This chapter focuses on EV charging-as-a-service that offers QoS, QoE, and fairness to
distributed charging services under the assumptions stated in Section 3.1. Section 3.2 de-
scribes the charging process model and Section 3.3 extends the notion of QoS and QoE
from [32, 35]. The queuing approach of [35] is detailed in Section 3.4.1 and distributed
probabilistic allocation mechanisms, which are inspired by wireless communication net-
works and support QoS control, are newly introduced in Section 3.4.2. Both online charg-
ing service allocation methods are evaluated on realistic input data in Section 3.5, including
a sensitivity analysis of the configuration parameters. Finally, the applicability of the pro-
posed solutions – supported by [11, 31] – and a possible extension for improved voltage
control [36] is discussed in Section 3.6, before a concluding summary is given.
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3.1 Assumptions

In addition to the general Assumptions A1 - A7 on EV charging in Section 2.5, this chap-
ter requires further assumptions on the power distribution grid, which are detailed in the
following.

A8 The power distribution grid is given in radial topology with a transformer station
towards the next higher voltage level as the root node. Furthermore, not all grid
parameters are available in the power distribution grid, hence parameters, such as
line impedance, line length, or exact loads at the buses, are not known. This is
generally valid for historically grown low-voltage power distribution grids, where
there is usually no monitoring in place and exact line parameters are not known by the
DSOs. Despite power distribution grids being built in a ring or meshed topology in
real life, they are operated as a radial network for faster fault detection, as discussed
in Section 2.1.

A9 For the EV charging use case, it is assumed that no reverse power flow happens in
the power distribution grid, which would typically be the case with high PV penetra-
tion. However, the proposed charging service allocation mechanisms are generally
applicable to reverse power flow as well. In that case, the current carrying capacity
of the lines and the transformer must be considered for both directions. Note that
the mechanisms are not designed to solve power grid problems introduced by other
generations or loads, but only limit EV charging such that this application does not
harm the power grid infrastructure.

A10 Critical power grid assets and locations in the power grid are monitored and respec-
tive local voltage and utilization measurements are instantaneously available at the
local nodes and are communicated to other nodes via ICT without delay or data
losses. This can be realized by distributed measurement devices and/or by modern
smart metering devices at the grid connection points of the customers, e. g., using
the Smart Meter Gateway (SMGW) concept in Germany. In case of communication
loss, the proposed mechanisms go to a fail-safe state with reduced charging power to
avoid harming the power grid.

A11 It is assumed that applying a coordinated charging service allocation mechanism
in time slots of one minute is sufficient for QoS control of charging services and
fast enough for reasonable load management in the power distribution grid. The
evaluation results in Section 3.5.2 underline this assumption and Section 3.6.2 shows
that control loops of one minute can be implemented in real-world environments.

3.2 Charging Service Model

A charging service defines the requirements for charging an EV and is given by (1) time of
arrival tarr when the EV reaches the charging location, (2) time of departure tdep when the
EV must leave the charging location at the latest and (3) the required energy to be charged
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Figure 3.1: Charging service with its arrival time tarr and departure time tdep, the start time
tsta and finish time tfin of a charging process, the minimum charging time tmin as dashed area,
and the charging power profile P(t) colored in solid red. Note that tmin must not necessarily
be smaller than tsta, and tfin can be equal to tdep.

Table 3.1: Parameters of a charging service.

Parameter Description

tarr ∈ R Arrival time of the EV for the charging service
tdep > tarr Departure time of the EV from the charging service
Ereq > 0 Required energy of the charging service

Pmax ∈ R+ Maximum charging power
P(t) ∈ [0,Pmax] Charging power profile for t ∈ [tarr, tdep]
E(t) ∈ R+

0 Charged energy at time t

tsta ∈ [tarr, tdep] Starting time of the charging process
tfin ∈ [tarr, tdep] Finish time of the charging process

tmin > tarr Minimum possible finish time

Ereq > 0 before departure. EVs that do not require any energy at all (Ereq = 0) are not
considered for a charging service. Time of arrival and time of departure together form the
available charging time of the charging service. In Assumption A7, it is assumed that EV
drivers provide their expected departure time and required energy with high confidence.
This assumption is investigated with sensitivity analysis of the input parameters in Sec-
tion 3.5.3. Figure 3.1 gives an overview of a charging service and its parameters, which are
summarized in Table 3.1.

The charging power during a charging service is specified as a function over time t in Equa-
tion (3.1), where the maximum charging power Pmax is limited by the charging equipment.

P : [tarr, tdep]→ [0,Pmax] : t→ P(t) (3.1)

The charged energy during a charging service until time t is denoted in Equation (3.2).
As defined in Assumption A3, a constant efficiency factor µEV is assumed for the charg-
ing equipment and the battery of the EV , independent of the batteries’ SoC or the ambient
temperature. Note that according to Assumption A2 V2G is not considered, because it is
counter-intuitive to the user for charging-as-a-service. Nevertheless, the following defini-

3.2 Charging Service Model 39



tions support V2G when allowing negative charging powers in Equation (3.1) and adapting
the energy calculation in Equation (3.2) with discharging efficiencies.

E(t) =
∫︂ t

tarr

P(x) ·µEV dx (3.2)

A charging process eventually starts at the first moment when the charging power profile
is greater than zero and the EV charges energy into its battery. The start time is formally
defined in Equation (3.3). If no charging process starts within the available charging time
of a charging service, the charging power profile is equal to the identical zero function, and
tsta is set to tdep. The required starting procedure of a charging process is small compared
to the overall charging time and can therefore be neglected [4].

tsta =

⎧⎨⎩
t ∈ [tarr, tdep] : P(t)> 0

∧∄t2 < t : P(t2)> 0
if ∃t ∈ [tarr, tdep] : P(t)> 0

tdep else
(3.3)

The finish time of a charging process, defined in Equation (3.4), is either the first moment
in time when the required energy Ereq is reached or equal to the departure time.

tfin =

⎧⎨⎩
t ∈ [tarr, tdep] : E(t) = Ereq

∧∄t2 < t : E(t) = E(t2)
if ∃t ∈ [tarr, tdep] : E(t) = Ereq

tdep else
(3.4)

Furthermore, a charging service succeeds if at least the required energy is charged until
departure time E(tdep) ≥ Ereq. Finally, Equation (3.5) calculates the minimum finish time
tmin > tarr, at which the charging process would finish when starting with a constant maxi-
mum charging power profile ∀t ≤ tmin : P(t) = Pmax at arrival tarr following Assumption A5.
In case the charging service cannot finish within the available charging time, the minimum
charging time is after the departure time tmin > tdep.

tmin = tarr +
Ereq

Pmax ·µEV
(3.5)

3.3 Charging Service Assessment

Based on the charging service definition and its properties, this section details QoS and
QoE parameters, as well as the fairness aspects of charging services.

3.3.1 Quality of Service

In the context of this work, the QoS of a charging service is defined by the following
criteria, considering the charged energy, the start and finish times of the charging process,
and the charging power profile. Note, that some QoS criteria are calculated at the end of
the charging service, while others can also be evaluated during the charging service.
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Finished Charging Service The main goal of a charging service is to deliver the required
energy Ereq to the EV . A successful charging service receives maximal QoS. Otherwise,
the QoS degrades proportionally with the remaining energy to be charged. This first QoS
metric, given in Equation (3.6), can be evaluated at each point in time during the charging
service, and QoS1(tdep) is the final metric score of the charging service.

QoS1(t) =
E(t)
Ereq

∈ [0,1] (3.6)

For all successful charging services, QoS1(tdep) yields an equal maximum QoS score, but
the QoS can further differ with respect to the time, at which the charging service reached the
required energy. Charging services that successfully finish far ahead of their departure time,
receive higher QoS compared to others, which finish shortly before departure. Therefore, a
secondary QoS metric QoS2 is defined in Equation (3.7), which is orthogonal to QoS1.

QoS2 =

{︄ tdep−tfin
tdep−tmin

∈ [0,1] if tmin ̸= tdep,

0 else
(3.7)

If a charging service did not successfully finish, QoS1 measures the QoS within [0,1] and,
according to Equation (3.4), the finish time tfin is equal to the departure time tdep; hence
QoS2 is always zero. Only for successful charging services, where QoS1 = 1 and tfin ≥ tmin,
QoS2 varies within [0,1] depending on the finish time of the charging process.

Charging Start Time The second main criterion of a charging service considers the ini-
tial waiting time of a charging process. It follows the logic that a charging process that
starts earlier has a higher chance to finish in time. Furthermore, a waiting charging process
does not receive any service until the charging process actually starts. Therefore, waiting
charging services receive a lower QoS score, as defined in Equation (3.8).

QoS3 =

{︄
1− tsta−tarr

tdep−tarr
∈ [0,1] if ∃t ∈ [tarr, tdep] : P(t)> 0,

0 else
(3.8)

In case a charging process did not start at all, the charging power profile P(t) is the identical
zero function and hence no t with P(t)> 0 exists, which results in QoS3 = 0. An immedi-
ately starting charging process has tsta = tarr and receives the highest score with QoS3 = 1.
The longer an EV waits before charging, the lower its metric score.

There exists a dependency between QoS1 and QoS3 if no energy is charged during the
charging service. In this case QoS1 and QoS3 result always in zero. As soon as QoS1
is unequal zero, the charging process starts at any time in [tarr, tdep] and QoS3 can be any
value from the interval [0,1]. Furthermore, QoS1 might not reach the maximum value with
a late starting time (e. g., tsta = tdep). Apart from that, both metrics are independent of each
other. A higher dependency exists between QoS2 and QoS3 because both consider the time
domain. QoS2 may affect QoS3 because the later a charging process starts charging, the
more time from the interval [tarr, tmin] is spent on waiting, which in turn may reduce QoS2.
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Charging Power A third QoS criterion is the variation of the charging power P(t) over
time, which is one representative of an intrinsic QoS parameter that measures infrastructure
parameters. In communication networks, this is referred to as packet jitter,4 which mea-
sures the variation of packet delays. The EV charging service focuses on charging power
variation, where high charging power variation results in bad residual charging time esti-
mation. This in turn reduces the quality of the feedback to the user. The respective QoS
metric assumes a discrete-time model with a constant time slot size of ∆ and is defined
in Equation (3.9), where σ(X) is the sample standard deviation of a set X = {x1, . . . ,xn},
calculated by σ(X) =

√︂
1

(n−1) ∑
n
i=1(xi− x)2. Note that in case no charging process starts,

this metric is equal to 0 because no residual charging time estimation can be done.

QoS4 =

{︄
1− 2·σ({P(t) : tsta≤t≤tfin})

Pmax
∈ [0,1] if tsta < tfin

0 else
(3.9)

The sample standard deviation σ returns a value from the interval [0, Pmax
2 ] since the charging

power profile is limited between 0 and Pmax. Therefore, QoS4 normalizes the output to the
interval [0,1]. Additionally, values of P(t) are only taken from the interval t ∈ [tsta, tfin],
because only the variation during the actual charging process matters. The waiting time
before charging and the time after the required energy is charged are not relevant for the
remaining charging time estimation.

QoS4 is independent of QoS1 because the amount of charged energy E(t) does not have any
impact on the standard deviation of the charging power profile. Only in case no energy is
charged at all (QoS1 = 0), the charging power profile is the identically zero function and,
hence, QoS4 is zero as well. Similar relation can be stated for QoS4 with QoS2 and QoS3,
respectively. If no energy is charged, both are fixed to zero likewise QoS4. Otherwise, the
variation of the charging power profile is almost independent of the start and finish time.

3.3.2 Quality of Experience

Compared to QoS, QoE takes a bigger picture of the service and measures the delight
and annoyance of the user. For EV charging, not only the charging service itself (defined
by arrival, departure time, and required energy) but also the circumstance of the charging
service is considered. Because this thesis focuses on enhancing the QoE fairness of a
charging service from a technical point of view, aspects like the simplicity of payment
or convenience of charging service are not considered in the following QoE criteria, even
though they play an important role in the users’ perception.

Battery State of Charge The first QoE metric refers to the battery SoC instead of the
charged energy of the charging service. Especially, with different battery sizes but the
same energy requirements, a user finally does not see the actual energy charged (in kWh),
but only the battery SoC is displayed in the car (in %). Following this user’s recognition,
a high SoC (near to SoCtarget) corresponds to a high QoE and vice versa. Similar to QoS1,

4Interested readers are pointed to RFC 3393.
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the QoE metric in Equation (3.10) can be evaluated at each point in time during a charging
service, and QoE1(tdep) is the final metric score.

QoE1(t) =
SoC(t)

SoCtarget
∈ [0,1] (3.10)

Next Trip A second criterion for QoE is whether the EV driver will reach the next desti-
nation without a charging stop on the way, which is expressed as a binary metric in Equa-
tion (3.11). The next trip is defined as feasible if the battery holds enough energy to reach
the next destination with a SoC greater than 10 % at arrival. With the remaining SoC, it
should be possible to reach the next charging facility near the destination. This again re-
lates to the users’ recognition and range anxiety, which let the driver recharge the battery
before running out of energy.

QoE2 =

{︄
1 if the next trip is feasible,
0 else

(3.11)

It can easily be seen that QoE1 and QoE2 are independent to a certain degree because the
next trip is independent of the actual battery size and its SoC. Nevertheless, with low SoC
(low QoE1) it is more unlikely to reach the next destination.

Utilization The third QoE criterion targets the utilization of the charging equipment.
Users with faster charging stations, e. g., with 22 kW peak charging power, expect that the
peak power of the charging equipment is utilized. If the mean charging power during the
charging process drops compared to the peak charging power of the charging equipment,
the QoE lowers as well. Similar to QoS4, this metric assumes a discrete-time model with a
constant time slot size of ∆, and the mean value is calculated by µ(X) = 1

n ∑
n
i=1 xi.

QoE3 =
µ({P(t) : tsta ≤ t ≤ tfin})

Pmax
∈ [0,1] (3.12)

This metric is independent of QoE1 and QoE2 because the mean charging power does not
directly influence the SoC at the end of the charging service nor relates to the next trip.

3.3.3 Fairness

Besides a high quality of service and experience scores, charging service operators are
interested in how fair the achieved QoS and QoE metric scores are distributed among the
charging services. In contrast to the literature, which often defines fairness based on the
instantaneous charging power received by the charging service, this thesis evaluates fairness
on the received QoS and QoE metric scores, which better depict the received service from
a user’s perspective. A very unfair allocation means that the QoS and QoE metrics differ
significantly among the different charging services, whereas very similar metric scores can
be considered fair. To analyze fairness separately from the QoS and QoE values, the fairness
index must be independent of the achieved metric values. Therefore, the fairness index by
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Hoßfeld et al. [74] in Equation (2.3) is used. The index calculation uses the metric scores
S = {s1, . . . ,sm} of m different charging services. For every single metric defined above,
a fairness index can be computed on a set of charging services, e. g., all charging services
of one week. Since all QoS and QoE metrics from Equations (3.6) - (3.12) are defined
within [L,H] = [0,1], the fairness index simplifies to Equation (3.13).

F(S) = 1− 2σ(S)
H−L

= 1−2σ(S) (3.13)

3.4 Methodology

This section presents a distributed hierarchical charging service allocation mechanism
based on queuing networks, which is published in [35]. Furthermore, a novel distributed
probabilistic charging service allocation protocol is introduced, which is inspired by MAC
protocols from the networking domain. Both charging service allocation mechanisms
include means of controlling QoS.

3.4.1 Hierarchical Queuing Networks

In communication networks, multiple information flows pass through the same shared
physical link simultaneously, e. g., using time-division or frequency-division multiplex-
ing. For packet switching, often queuing models are used to send packets over a network
of nodes. Each node holds a queue with packets awaiting transmission to another node.
Whenever the communication link is free, a scheduler selects the next packet in the queue,
normally based on a first-in-first-out policy. To establish a certain QoS, other policies can
be applied such as EDF, LLF, Weighted Fair Queuing (WFQ), or packet prioritization.

In this work, each EV is represented by a flow, and the EV can request charging currents
by scheduling packets to the power grid in discrete time slots (e. g., one minute), where the
packet size psize equals the EVs’ minimal adjustable charging current. This guarantees that
EV battery constraints and control capabilities are considered as stated in Assumptions A4
and A5. For example, if the battery of an EV limits the charging power to 6.9 kW (10 A
on three phases) and the EV can change its charging current in discrete 3 A steps (1 A per
phase) the EV charging service needs to queue ten packets for each phase. Without loss
of generality, this section models the packet allocation for a balanced three-phase power
system, hence considers only one queue for a single phase.

3.4.1.1 Charging Packet Request and Assignment

The shared network is the underlying power distribution grid whose bandwidth is limited
by the available capacities. To not overload power grid assets, a Scheduling Unit (SU),
which contains the queuing logic, is placed at each limiting cable or transformer. Because
the power distribution grid is typically operated as a radial network as stated in Assump-
tion A8, the single SUs span a tree on top of the power grid infrastructure. Each EV requests
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Figure 3.2: Hierarchical composition of EVs and SUs for the queuing approach [35].

charging current packets to the nearest connected SU, typically at the supplying cable or
transformer. The requested packets pass the network tree toward the root node as depicted
in Figure 3.2(a). Thereby, each SU only forwards packets to the next SU as long as the
local capacity limit is not reached. Finally, the root node, e. g., responsible for the trans-
former of a low-voltage network, assigns its available capacity by returning the packets
top-down to the EVs, as depicted in Figure 3.2(b). Note that voltage violations are treated
by a Q(U)-controller described in Section 3.5.1.

To determine the available capacity of a shared link, Assumption A10 allows measuring
parts of the power distribution grid in each time slot, and from that inferring the available
charging capacity of the next time slot using short-term forecasts, e. g., with a persistence
model, and data-driven state estimation [34]. The bandwidth calculation can also include
an approximation of the power distribution grid losses, which in turn reduces the actual
available charging capacity at the end of the radial network, e. g., depending on the cable
type and power grid loading. As discussed in Section 3.6.1, the root node may participate
in DR programs or act as a market agent, which artificially limits the EV charging power
based on market signals in addition to the pure network-related capacity limitations. This
request and response control loop repeats every minute as stated in Assumption A11.

The assigned charging capacity Ci(t) of an EV i in time slot t ∈ N is calculated in Equa-
tion (3.14), where Ai(t) is the set of packets that are assigned to the EV by the SU and
psize is the size of the packet p. Because EVs that still have packets in the queue might
leave before the next iteration starts, all queues are flushed afterward so that no power grid
capacity is lost. Finally, the allocation algorithm is executed again for the next time slot,
starting with the request of packets from the EVs.

Ci(t) = ∑
p∈Ai(t)

psize (3.14)

A reliable and fault-tolerant ICT architecture between the SUs, measurement devices in the
power grid, and the EVs is required for the aforementioned procedure. In case of commu-
nication issues, like packet delay or drop, affected EVs must move to a fail-safe mode and
pause their ongoing charging processes immediately to avoid damage to the power grid. In
this fail-safe mode, charging capacity is still requested to the SU until the EV receives new
packets and can resume the charging operation in normal operational mode. Note that this
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work does not target privacy nor security issues like packet injection, that may arise with
the operation of ICT infrastructure. The proposed approach includes central schedulers at
limiting cables or at the transformer station, which can be seen as a single point of failure
for all attached EVs. However, SUs are logical units that do not store state information
beyond a single time slot. Hence, SU instances can be executed in a cloud environment,
which allows fast fault recovery.

The communication effort between entities scales linearly with the number of involved EVs
and SUs. In each time slot, EVs (leaf nodes in the tree topology) need to send the requested
packets along the path of SUs (inner nodes) to the root node, which finally returns a subset
of these packets to their origins. Sending packets from one node to another produces a
constant cost of O(1). Because each EV and each SU sends all packet requests in a single
message only once back and forth in each time slot, the total communication cost can be
approximated with O(n+m), where n is the number of inner nodes and m is the number of
leaf nodes.

3.4.1.2 Queuing Policies

In the following, different commonly known scheduling policies are presented and dis-
cussed with respect to EV charging, including the proposed dynamically weighted fair
queuing approach to reach high QoS and QoE scores and fairness. All policies can be im-
plemented using the same queuing logic from the previous section. In general, the schedul-
ing policies make use of the two main properties of a charging service: The remaining
available charging time and the remaining required energy (or SoC level).

First-Come-First-Served (FCFS) The typical implementation of a queue is the first-in-
first-out strategy, where the first element that reaches the queue is the first element that
will be processed. In the case of EV charging, the policy translates to a first-come-first-
served policy. The EV that arrives earlier will be served first with the maximum possible
charging current. If there is available charging capacity left, the EV that arrived next will
be served, and so forth. Even though considering only the arrival time of EVs for the
charging service allocation is simple to realize and secure against malicious user inputs,
the flexibility (required energy and residual charging time) of the EV is not considered at
all with this scheduling policy.

Earliest-Departure-First (EDF) Contrary to the FCFS scheduling, the earliest-deadline-
first policy executes tasks in the order of the nearest deadline, e. g., used in Central Pro-
cessing Unit (CPU) task scheduling [103]. The idea behind this method is to process the
more critical tasks first under the assumption that on average each task takes a similar ex-
ecution time. For EV scheduling, earliest-deadline-first turns into earliest-departure-first,
only considering the departure time of the EV during scheduling. Similar to FCFS, this
policy does not consider the required energy, and all packets of the same EV are scheduled
with the same priority, which results in maximum charging rates for only a few EVs.
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Least-Laxity-First (LLF) The priority of a task is inverse to its slack time, which is equal
to the remaining extra time after job execution until its deadline. Note that the slack time
can even be negative in case the job cannot finish on time, which however does not change
the execution order of least-laxity-first scheduling. The slack time s(t) at any time t is
calculated in Equation (3.15), where d is the deadline, r(t) is the release time since the
start, and c(t) is the residual computation time at time t.

s(t) = d− r(t)− c(t) (3.15)

In EV charging, the departure time is equal to the deadline (d = tdep− tarr), the time spent
within the available charging time equals the release time (r(t) = t− tarr) and the required
charging time with an assumed maximum charging power equals the residual computation
time (c(t) = Ereq−E(t)

Pmax·µEV
). Note that for calculating the residual charging time constant current

charging with maximum charging power is considered, following Assumption A5.

Proportional (PROP) The proportional fair scheduling policy guarantees that every par-
ticipant receives a fair share of a limited resource proportional to its anticipated resource
consumption. Proportional fairness is discussed in literature many times concerning the
expected charging power [14, 15, 94, 144, 151], hence the proportional allocation policy is
also based on the charging power requests of the EVs. In the hierarchical queuing network,
proportional fairness is a local property between EVs connected to the same SU. Capacity
limitations along the power distribution grid prevent achieving global proportional fairness.

Weighted Fair Queuing (WFQ) Packet GPS [42] can be approximated with weighted fair
queuing and is used to share a resource’s capacity fairly between flows, while the weight
determines the fraction of capacity that each flow receives. In network scheduling, each of
N packet flows, that passes a shared link, is managed by a separate queue i with a weight
wi ≥ 0, which is determined by the priority of that flow. Every time a new packet p is
received, its virtual finish time is computed in Equation (3.16), where virtStarti is the last
virtFinish time of the same queue i (or the current time if the queue is empty) and bi is the
assigned bandwidth of that queue. The virtual finish time refers to the time when the packet
would arrive if all packets of the queue are sequentially sent with the given bandwidth.

pvirtFinish = virtStarti +
psize

bi
(3.16)

The bandwidth calculation of flow i is given in Equation (3.17) using the weights of all
single queues w j and the maximum bandwidth R of the shared link.

bi =
wi

∑
N
j=0 w j

·R (3.17)

Whenever the scheduler can send a packet over the shared link, it selects the queue that
contains the packet with the smallest virtFinish time and sends the first packet from that
queue. Thereby, resources are allocated proportionally fair to the weight of each queue
(flow) independent of the packet sizes.
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Algorithm 3.1: Packet request aggregation at SUs.
Input: Set of packets P requested from SU or EV
Output: Set of packets R for the request to the next higher level
forall p ∈ P do

Qi← getQueue(p);
pvirtFinish← (3.16), (3.17), (3.18), and (3.19);
Qi← Qi + p;

end
R← /0;
while local capacity limit not reached do

Qi← getNextQueue();
R← R∪{nextPacket(Qi)};

end
return R

The pseudo-code for requesting packets at a SU is given in Algorithm 3.1 and the packet
assignment is shown in Algorithm 3.2. In both cases, Qi denotes the packet queue of
EV/SU i = 1, . . . ,N, getQueue(p) determines the queue of packet p, getNextQueue() re-
turns the queue with the smallest virtFinish time, and nextPacket(Q) returns the packet
with the smallest virtFinsh time of queue Q. In networking, the packet size psize denotes
the number of bits of the packet and the bandwidth defines how many bits can be transmit-
ted per second (bit/s). For EV charging, the packet size is given by the minimum adjustable
charging current. Because the requests are only valid for a discrete-time ∆, the actual packet
size can be seen as the electrical charge (Ah) that needs to be transmitted by the power grid.
Analogously, the bandwidth is the current carrying capacity of the power grid (in A).

In statically WFQ, the weight of one charging service is determined at the beginning of the
charging service when the EV arrives at the charging station. Similar to [179], the weight is
based on the comparison of the required SoC with the current SoC of the EV . The weight of
each EV i is calculated in Equation (3.18). EVs that require a full charge receive a weight
of 11 and EVs that arrive at home with the required SoC in the battery obtain a weight of 1,
hence will only charge with minimum priority.

wi =
max(SoCtarget,i−SoCi(tarr),0)

100%
·10+1 (3.18)

Dynamically Weighted Fair Queuing (DWFQ) By dynamically changing the weights of
the flows, WFQ can be utilized to control the QoS for each flow. In contrast to statically
weighted fair queuing by [179], the DWFQ policy considers both flexibility aspects of the
charging service, namely available charging time and required energy. Because for WFQ
the weights wi(t) must be greater than zero, the slack time cannot be used to dynami-
cally estimate the weight of a charging service like in LLF policy. Instead, the remaining
charging time c(t) is divided by the remaining time until departure as in Equation (3.19).
Charging services that cannot finish on time are given a weight greater than 1, while others
that may finish until departure are given a weight less or equal to 1. Once the weight crosses
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Algorithm 3.2: Packet assignment at SUs.
Input: Set of assigned packets P for this SU
Output: Assignments Ai for EV/SU i = 1, . . . ,N
∀i = 1, . . . ,N : Ai← /0;
C← ∑p∈P psize;
while min(C, local capacity limit) not reached do

Qi← getNextQueue();
p← nextPacket(Qi);
Ai← Ai∪{nextPacket(Qi)};

end
return (Ai)i=1,...,N

the uniform value of 1, it stays greater than 1 until departure, since under Assumption A5
the remaining available charging time is not sufficient for the charging service to succeed.

wi(t) =

(︂
Ereq−E(t)
Pmax·µEV

)︂
tdep− t

(3.19)

3.4.2 Distributed Probabilistic Protocols

In communication systems, there exist many distributed mechanisms for MAC on a shared
medium. For instance, the Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
method, implemented in Ethernet networks as defined in IEEE 802.3, ensures that a sender
does not start transmitting a frame if the shared medium is busy (carrier sense) and imme-
diately stops transmission if another sender transmits simultaneously (collision detection
by listening to the medium in parallel).5 Whenever a collision is detected, all senders stop
transmitting immediately and sample a random backoff time (waiting time), until which
the senders retry sending the frame. This backoff time is typically sampled from a Bi-
nary Exponential Backoff (BEB) window that increases exponentially with the number of
consecutive collisions. Wired Ethernet networks allow collision detection, whereas in wire-
less networks simultaneously receiving during transmission is challenging and, due to the
hidden node problem [108], carrier sensing might even fail. Therefore, wireless network
protocols apply Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA) imple-
mented by the Distributed Coordination Function (DCF), defined in IEEE 802.11, where
instead of detecting (and tolerating) collisions, the goal is to avoid collision upfront. To do
so, the sampled random waiting time from the BEB, in the context of IEEE 802.11 called
Contention Window (CW), decreases only when the medium is not sensed busy. This dras-
tically reduces the likelihood that multiple senders start transmitting at the same time.

5Modern Ethernet networks are built with switches and isolated full-duplex cables, which makes the CSMA/CD
obsolete, but the specification is still valid for backward compatibility.
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3.4.2.1 Distributed Coordination Function

The power distribution grid tolerates parallel charging processes up to a certain limit. A
collision occurs whenever the current flowing through a power grid asset crosses a defined
threshold, e. g., transformer or cable overloading. This however cannot be detected in a
fully decentralized manner,6 but a detected collision can be broadcast to all affected charg-
ing locations, e. g., all charging stations of the low-voltage power grid if the transformer
is overloaded. The power distribution grid can be considered as busy (additional charg-
ing processes are not possible) if the loading of the power grid assets is near the collision
threshold, e. g., 10 % below the limit. If the power grid is neither sensed busy nor a collision
is detected, it is considered to be free for charging.

Similar to the queuing network approach in Section 3.4.1, the time domain is split into
discrete time slots, e. g., 1 min. To ensure the timely starting of a charging process, the
maximum mean delay time should be below 10 min, hence the smallest CW is defined
by [0,CWmin− 1] (CWmin = 24 = 16min). The maximum CW is limited to [0,CWmax− 1]
(CWmax = 28 = 256min), which is approximately one-quarter of the mean parking duration
of the data set in Section 3.5.1. After arrival, a charging process is allowed to immediately
start charging if the power grid is not sensed busy. Otherwise, the charging service must
sample a uniformly random value from the CW interval. As long as the power distribution
grid is not sensed busy, a charging service decreases its backoff timer every time slot until
the charging process finally starts when the backoff timer reaches zero. The charging is kept
active for at least a predefined charging frame duration (e. g., 15 min) unless a collision
occurs. If the power grid is sensed busy after that duration, the charging process stops
and proceeds with a newly sampled random backoff from the CW. Otherwise, the charging
process can remain to charge as long as the power grid is not busy. In both cases, pending
charging services are allowed to reduce their random backoff timers, which offers them
potential access to the power distribution grid. Retaining charging after the charging frame
duration when the power grid is not busy improves the power grid utilization.

Compared to communication networks, it is not desirable that after a collision all charging
processes stop immediately because this will most likely cause a voltage dip (short rise of
the voltage), which may harm electrical equipment. Instead, each active charging process
samples a discrete random variable X ∈ {0,1} with P(X = 0) = P(X = 1) = 0.5, which
expresses an additional waiting time. The charging process stops immediately only if the
random variable equals 0. Otherwise, it keeps charging for one additional time slot and
re-evaluates whether the collision persists. If the collision is already resolved, the charg-
ing process proceeds to charge without interruption. Otherwise, the random variable X is
sampled again. Overall, this ensures that all active charging processes together perform
an exponential decrease of their charging current in case of collision events. Similar to
networking, a detected collision during active charging exponentially increases the CW in-
terval. Whenever a charging frame duration is charged without collision, the CW is halved.
This implements an exponential-increase-exponential-decrease method for the CW.

6One may think of detecting voltage problems locally, however, the voltage does not necessarily correlate
with asset overloading and, as a local phenomenon, it is not guaranteed that all charging locations form a
consensus, which may result in discrimination of some charging locations.
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Figure 3.3: Example of the DCF for three EV charging services using BEB. Between t2
and t4 charging service C pauses to count down its random backoff because the power grid
is sensed busy. At time t8 a collision occurs, which forces A and B to stop charging.

In the following, the DCF-based probabilistic charging service allocation protocol is ex-
plained by an example, that has three pending charging services A, B, and C, where only
two charging processes can be active simultaneously. The timeline of the events is depicted
in Figure 3.3. It is assumed that the charging services A and B arrive before t0 and still
need to wait the remaining time from their random backoff from the initial assumed CW
interval of [0,3]. At t1, A starts charging and because the power grid is not sensed busy, B
continues to count down its backoff time by one. The third charging service C arrives at t2
and samples a random backoff time of 1 which is instantaneously deferred because B starts
charging at that time and causes the power grid to be sensed busy. At time t5, charging
process A completes its charging frame duration of 4 time slots and stops charging immedi-
ately, because the power grid is sensed busy. This allows other charging services, like C, to
resume decrementing their backoff timers. Additionally, charging process A samples a new
random backoff of 2. Charging process B does not directly stop after the charging frame
duration of 4 time slots, but continuous charging until starting of C causes the power grid to
become busy. B samples a new random backoff of 1. Because the charging process of C is
still charging at t8 and the power grid is not sensed busy, A and B start charging simultane-
ously, which causes a collision (power threshold is crossed). As a result, all three charging
services sample a random value from {0,1}, where A and B draw 0 (stop charging) and C
draws 1 (keeps charging). Because the collision is solved by the reaction of A and B, and
the power grid is not sensed busy anymore, C charges until the power grid is detected busy
at t11. After the collision at time t8, all charging services exponentially increase their CW
to [0,7]. Charging process A samples a new backoff time of 3 and process B samples 2,
hence B starts charging at t11 before A starts at t13. Because C can successfully finish its
charging frame duration at t11, its CW is reduced back to [0,3].
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Because EVs can control their charging power in discrete steps, e. g., in 1 A steps per phase,
any charging service may run several DCF procedures in parallel, where each procedure
decides on whether to charge with a portion of the controllable charging current. The sum
over all DCF procedures gives the overall charging current at the next time slot. If it is
below the minimum charging current, the charging process needs to stop or will not start
yet. As a result, the protocol supports variable charging currents, which fits the means of
controlling an EV charging process as in Assumption A4.

3.4.2.2 Enhancement with Quality of Service Control

The MAC protocol extension in IEEE 802.11e adds means of controlling QoS to the wire-
less communication standard via Enhanced Distributed Channel Access (EDCA). Thereby,
traffic is assigned to access categories with different priorities, among them voice, video,
best-effort, and background traffic. Frames from prioritized access categories have a higher
chance of being transmitted whenever the shared medium is free. This is guaranteed via
shorter waiting times and smaller CW configurations. For example, voice frames are sent
with the highest priority, because voice applications typically require low latency and voice
interrupts highly impact the service quality. For video applications, the latency is less im-
portant because received frames are buffered for a short time before the video is finally
decoded. Best-effort and background traffic, e. g., sending E-Mails or downloading data,
have the lowest priority because they are typically not time critical. This concept maps to
the CoS introduced in Section 2.2.

In wireless communication, frames from different access categories need to wait a different
amount of time, called Arbitration Inter-Frame Spacing (AIFS), after the shared medium is
identified to be free. Access categories with higher priority wait for shorter AIFS and lower
prioritized categories wait longer. The backoff time is counted down after the specific
AIFS time of the access category has passed. To further improve the service quality, the
minimum and maximum size of the CW is reduced, which consequently prioritizes frames
from different access categories after collisions.

The priority of the charging service depends on its laxity, which may dynamically change
over time depending on whether the charging process is active or not. Therefore, to distin-
guish the urgency of the different charging services, they are sorted into six QoS classes,
similar to the four access categories in wireless communication. However, a charging ser-
vice is not statically assigned to a QoS class, but the QoS class may dynamically change
when the urgency of the charging service increases or decreases. The assignment to a QoS
class is given in Equation (3.20) and is defined on how often the residual charging time
(with assumed maximum possible charging rate and constant current charging) fits into the
remaining available charging time. Additionally, the ln(.) function is used to better spread
charging services with medium to low laxity to the lower QoS classes.

QoSclass(t) = max

⎛⎝0,min

⎛⎝⎢⎢⎢⎣ln

⎛⎝ tdep− t(︂
Ereq−E(t)
Pmax·µEV

)︂
⎞⎠+1

⎥⎥⎥⎦ ,5
⎞⎠⎞⎠ (3.20)
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Figure 3.4: Application of QoS classes to the EV charging service allocation protocol.

Note that the QoS class is inverse to the weight function of the DWFQ policy in Equa-
tion (3.19). Hence, charging services with negative laxity will be in QoS class 0, charging
services with small laxity smaller will be in QoS class 1, and so on. Charging services that
are not actively charging may switch to a lower QoS class with higher priority, whereas
active charging services reduce their residual charging time and may therefore switch to
a higher, less prioritized QoS class. Once a charging service is in QoS class 0, it cannot
change its QoS class anymore and will stay with the highest priority until departure.

Instead of waiting a specific AIFS time depending on the access category, a charging service
simply waits an additional time equal to its QoS class, which gives a maximum additional
waiting of 5 min. Furthermore, the enhanced QoS version of the DCF charging assignment
protocol selects the minimum (aCWmin) and maximum (aCWmax) CW size depending on
the current QoS class at time t, given in Table 3.2. Note that only the lower QoS classes
obtain reduced CW window sizes, such that the upper waiting time limit after a sequence
of collisions remains the same.

Figure 3.4 depicts an example with three charging services A, B, and C with different QoS
classes, where only one charging process can charge at once. In the beginning, A is still
charging until t3, after which it waits its QoS class of 2. Because B and C have QoS class 1,
they only wait one additional time slot at t4 before counting down their backoffs. C reduces
its backoff by one and defers the remaining time, while B waits for its remaining random
backoff of 1 and starts charging in the next time slot t6. After waiting for the QoS delay,
A needs to defer the full backoff time in t6. At time t9, B completes its charging frame
duration and all charging services again need to wait their QoS class, before they continue
counting down their backoffs.
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Table 3.2: Calculation of QoS-aware CW boundaries and QoS class delays.

QoS class aCWmin aCWmax AIFS delay

0 1
4 CWmin = 4 min 1

32 CWmax = 8 min 0 min

1 1
4 CWmin = 4 min 1

16 CWmax = 16 min 1 min

2 1
2 CWmin = 8 min 1

8 CWmax = 32 min 2 min

3 1
2 CWmin = 8 min 1

4 CWmax = 64 min 3 min

4 CWmin = 16 min 1
2 CWmax = 128 min 4 min

5 CWmin = 16 min CWmax = 256 min 5 min

Start

Update
QoS_class(t)

charging

collision

no

busy

no

TQoS > 0

no

TQoS = TQoS−1

yes

TBEB > 0

no

TBEB = TBEB−1

yes

Start charging

no

TC = Z

TC > 0

yes

TC = TC − 1

no

collision

yes

busy & TC = 0

no

CW =
max( 1

2CW,aCWmin)

yes

CW =
min(2CW,aCWmax) yes

Sample X

X > 0

Stop charging

no

TBEB = r(CW )

TQoS =
QoSclass(t)

yes

yes

End

no
yes

Figure 3.5: Sequence diagram of the probabilistic EDCA EV charging protocol. The dif-
ferent colors highlight the parts that are related to the power grid (purple), charging (green),
binary exponential backoff (blue), and QoS control (red).
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For the QoS-enhanced version of the EV charging control schema, the sequence diagram
in Figure 3.5 is invoked at every time step of the charging service. It is assumed that every
charging process has already chosen an initial random backoff time if the power grid is
sensed busy at arrival. Otherwise, the backoff timer is set to TBEB = 0. The timer for
counting down the QoS class-specific AIFS delay is denoted by TQoS and the timer for
tracking the charging frame duration is denoted by TC. A new random backoff time is
uniformly sampled from the interval [0,CW −1] with the function r(CW ) and the charging
frame duration is set to Z.

The communication effort of the distributed probabilistic protocols scales linearly with
the number of SUs that are placed at critical assets in the power grid. Each SU needs to
broadcast a signal (free, busy, or collision) to each EV that is located underneath the power
grid. If this can be realized with broadcast messages, the required communication can be
approximated by O(n), where n is the number of critical assets in the power grid.

3.4.3 Discussion

Some queuing policies share similarities with the probabilistic allocation protocols. For
example, PROP aims to assign each EV charging service a proportional amount of charg-
ing capacity comparing the possible charging current of each charging process. A similar
result is achieved by the DCF approach, where competing charging services receive on av-
erage a similar charging capacity. Thereby, both PROP and DCF utilize variable charging
currents for the charging processes. Second, DWFQ uses the laxity of the charging service
for prioritization, similar to EDCA, where charging services are grouped into QoS classes
according to their laxity. Again, both methods use variable charging currents.

The major difference between the hierarchical queuing approach and the probabilistic pro-
tocols is in terms of required communication effort and computational power at the par-
ticipating entities. Both methods require SUs in place to assign currents according to a
policy (queuing) or generate busy/collision signals (probabilistic protocols). Obviously, in
both cases, the SUs require local information as stated in Assumption A10, e. g., current
flow measurements. The main difference is the way of communicating the signals to the
EV charging processes. The hierarchical queuing network performs a two-step request-
response schema with bidirectional communication, where a charging request from the
charging processes is forwarded to the uppermost SU before the response is sent back the
request chain. Hence, the number of sequential messaging is linear to the longest chain
of SUs to the root, which limits the reaction time of the algorithm. On the other hand,
the probabilistic protocols only require one-directional communication from the SUs to
the charging processes, which directly receive a congestion broadcast signal from any SU.
Hence, the required sequence of communication is constant in O(1). In both methods, the
computational requirement is rather low, e. g., limited to charging packet switching and
random number sampling. Such tasks can easily be accomplished by embedded hardware
such as network switches or EV charging controllers. In addition, the time requirement of
the calculation is low, since the charging current allocation is re-evaluated every minute
when a new control signal is computed. In contrast to the reduced communication effort,
the power grid utilization of the probabilistic methods is lower due to the waiting times.
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It is worth mentioning that both methods rely on the SUs where congestion occurs. If
these SU are not working correctly, e. g., produce a wrong output or do not respond at
all, this has a similar effect on both methods. In the case of the hierarchical queuing ap-
proach, a not responding SU will cause its sub-tree to not charge at all since no charging
processes grouped underneath will receive a message with the assigned charging current.
Similarly, without a free signal, charging processes cannot be sure that the shared power
grid is ready for charging, and hence need to wait. If the messages/signals from the SUs are
(maliciously) incorrect, e. g., ignoring overload situations, the charging processes are not
informed correctly to mitigate this event. Also, the logic of the charging service must be
trusted. Hence, the integrity of all the participating entities (SUs and charging processes)
and reliant communication must be ensured as stated in Assumption A10.

3.5 Evaluation

This section first describes the co-simulation setup for the evaluation, including the used
charging pattern for EV charging services, the underlying low-voltage power distribution
grid, and the connection of the different simulators. In the second part, the hierarchical
queuing and probabilistic charging service allocation mechanisms are evaluated with regard
to QoS, QoE, and fairness, as well as their impact on the power system. A sensitivity
analysis of the simulation parameters finally demonstrates the impact of user inputs, power
grid limitations, and the voltage controller.

3.5.1 Setup

The evaluation is performed via co-simulation of the different EV charging service allo-
cation mechanisms, simulated EVs, and a simulation of the IEEE 906 low-voltage power
distribution grid. All simulators are connected with the co-simulation framework mosaik7.

3.5.1.1 Electric Vehicle Charging Pattern and Battery Model

In the literature, authors use different EV charging patterns to evaluate their control algo-
rithms, which can be categorized as follows.

• One category uses stochastic modeling of charging data, where typical arrival and
departure times are defined, and the charging services are sampled from a normal
distribution around these times [107, 171]. These charging patterns are accurate for
large scale simulations because they reflect the expected typical behavior around the
chosen arrival and departure times. However, when the simulation scenario contains
only a few EVs, probabilistic charging patterns are less suitable, because outliers,
which are not modeled well, may have a huge impact on the results.

7https://mosaik.offis.de (version 2.6.1)
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• The second category uses charging patterns based on real data sets [101, 102, 149].
These charging patterns are the most realistic, however, the circumstances of the data
set must fit the scenario under investigation to avoid biasing the result. For example,
public charging differs from EV home charging in terms of charging power rating
(fast vs. slow charging), parking times (during the day vs. overnight), and charging
flexibility (short charging stays with large energy requirement vs. longer charging
stays with shiftable charging time). Additionally, early EVs have shorter driving
ranges and are therefore typically used as secondary cars, which does not reflect
the expected charging behavior with very high EV penetration. Several public and
workplace charging data exists [16, 100, 122], however data for private households
is less common, due to the lack of recording capabilities, or only reflects the mobility
requirement of the recorded area [156].

• The third category uses realistic data sets generated from mobility surveys [35, 37,
148]. These typically nationwide surveys cover representative mobility patterns of
households in different regions with different mobility needs. First, the survey data
is filtered to fit the required means of transport and the regional scenario under in-
vestigation. Afterward, charging patterns are created from the driven distance, the
parking time of the car, and the assumed EV characteristics including battery size,
charging speed, and average consumption. These realistic data sets have both sta-
tistical relevance and possible outliers to be realistic even on a smaller number of
charging patterns, e. g., for studies on a low-voltage power distribution grid.

In this thesis it is assumed that most people will not (like to) change their driving behavior
drastically when switching from combustion engine vehicles to EVs in the future. There-
fore, data from the Mobility Panel Germany8, which provides one-week survey data on
travel behavior in Germany [47], serves as the basis for EV charging behavior. This data
record contains 1757 surveyed households with more than 2000 individual trips in which
the car is the main means of transportation. Each registered trip consists of trip sections
with destination, time of departure and arrival, and distance covered.

The mobility survey data is filtered to fit the rural region of the investigated low-voltage
power distribution grid, described in Section 3.5.1.2, and the trip sections are aggregated
such that each aggregated trip starts and ends at home. The resulting data contains the
arrival time at home tarr, the departure time from home tdep, and the distance d of the
last trip before arriving at home. It is assumed that the vehicle will not be charged if
the stay between two trips is less than 1 h, due to convenience reasons of the EV driver,
and the corresponding distance is added to the next trip. It is further assumed that all
EV drivers want to recharge the consumed energy of the last trip during their stay at home,
which is reasonable because home charging is typically less expensive than public charging.
Assuming a battery storage capacity of 40 kWh9 and an average energy consumption of
8Mobility Panel Germany: MOP 2016/17, Bundesministerium für Verkehr und digitale Infrastruktur (English:
Federal Ministry of Transport and Digital Infrastructure)

9Compared to the battery capacities offered by EV manufacturers, 40 kWh seems rather small, however, the
author of this thesis believes that for most of the trips, the advertised huge driving range of more than 400 km
is not required. This estimation is underpinned by the fact that more than 98 % of the trips in the data set can
be driven with the assumed battery capacity.
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Figure 3.6: Commuting behavior of the charging patterns. The majority of EVs arrive
around 18:00 and leave at 7:00, which can be seen from the histograms beside the axis.
Additionally, some EVs are arriving around noon with shorter stays. EVs that have an
earlier departure time than arrival time in this plot, depart on the following days.

17 kWh per 100 km, the required energy of the charging service, which is upper limited by
the battery capacity, can be estimated using Equation (3.21). In case the battery capacity
of an EV is not large enough to cover the whole trip distance, it is assumed that the driver
visits a public charging station during the trip, where only the required additional energy is
charged. With this worst-case assumption, the EV will arrive home with an empty battery
and requires a full charge cycle. The departure times are assumed to be strict deadlines,
hence EV that missed charging Em kWh requires more energy in the next charging service.

Ereq = max(40kWh,d · 17kWh
100km

+Em) (3.21)

The number of charging services per EV ranges between 0 and 15 per week. The mean
parking duration is approximately 16.6 h and the mean driving distance is equal to 39.1 km
per trip. As can be expected, many commuting EVs reach home between 17:00 and 18:30
and need to leave between 6:30 and 8:00 on the next day, which can be seen in Figure 3.6.
In addition, the data set also contains 13.2 % shorter charging stops with less than 3 h,
which arrive almost normally distributed around noon.

The batteries of the EVs are modeled using a constant current battery model according
to Assumption A5. However, other battery models are theoretically possible, which would
require a more advanced estimate of the remaining charging time. Both the queuing models
and the probabilistic protocols support variable charge requests to handle variable charging
power requirements from the battery model in their charging packet requests and try-error
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Figure 3.7: IEEE 906 low-voltage test feeder, where the transformer is located in the top
left side and 55 households are connected to the power distribution grid.

approaches, respectively. Furthermore, following Assumption A3, the constant charging
efficiency is set to 95 %, and the minimum adjustable charging current is given by 3 A.
Additionally, the minimum charging current of the EV is limited by 18 A (6 A per phase),
similar to the control capabilities in IEC 61851-1 as described in Section 2.3. To encode the
minimum charging current, the first queued packet of each charging service has a packet
size of 18 A. All following packets have the minimal adjustable size of 3 A and are only
assigned after the first packet according to the queuing logic. The distributed allocation
strategy only starts charging if enough sub-procedures decide to start. The threshold for
busy is configured to be 10 % below the transformer limitations. Consequently, the absolute
difference between busy and collision is greater than the minimum charging current of an
EV for all experiments, such that starting a single EV cannot jump from free to collision.

3.5.1.2 Power Grid and Simulation Scenarios

The evaluation is carried out on the simulated IEEE 906 low-voltage test feeder. This typi-
cal European low-voltage power distribution grid, shown in Figure 3.7, connects 55 house-
holds on a three-phase power system. Since balanced EV charging is assumed, the power
flow simulation in PyPower connects all households balanced to all three phases. Further-
more, the load profiles of the households have a power factor of 0.95 inductive and each
household owns two EVs10 that can charge in parallel at two 22 kW wallboxes.11 The
aforementioned charging patterns are randomly assigned to the EVs.

10Households in rural areas in Germany own an average of 1.64 vehicles in 2020 [143]. Hence, two EVs is a
rather conservative assumption that reflects a very high EV penetration rate.

11Note that according to NAV §19 (Niederspannungsanschlussverordnung; English: Low-voltage connection
regulation) wallboxes with up to 12 kVA must only be registered to the power grid operator in Germany,
while above 12 kVA approval by the power grid operator is required.
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Figure 3.8: Voltage controller according to VDE-AR-N 4100. Real and reactive power
limits depend on the locally measured voltage value [35].

In the baseline scenario without EV charging, the low-voltage power grid has a peak load
of 60.5 kVA at the transformer, which is substantially smaller than the total installed charg-
ing capacity of 2.4 MVA. Nevertheless, uncontrolled charging with 22 kW and the afore-
mentioned charging patterns results in a peak load of approximately 312 kVA due to the
simultaneity factor. Because this would increase the peak load at the low-voltage trans-
former by more than five times, which applied to many low-voltage power grids can cause
critical peak loads in the superior power grid infrastructure, the maximum loading at the
transformers’ SU is limited to 100 % of its baseline peak.

The proposed queuing and probabilistic allocation mechanisms act as load management. To
additionally react to voltage violations, a linear voltage droop controller that uses reactive
power control capabilities according to Assumption A6 is implemented as in Figure 3.8.
This decentralized voltage controller changes the reactive power behavior of the rectifier
and in critical situations even reduces the real power demand of the EV . To avoid grid
losses and keep the reactive power ratio in the low-voltage power grid in a reasonable
range, the voltage controller implementation is configured to have always a power factor
better than 0.9. To not exceed the provided current capacity from the allocation mechanism,
besides the adaption of the reactive power behavior, the real power demand is slightly
reduced between 0.93 p.u. and 0.97 p.u. (1.03 p.u. and above respectively). Furthermore,
the reactive power decreases with the real power demand below 0.93 p.u. to stay with the
defined minimum power factor. To avoid oscillations, a first-order lag filter is applied to
the control signal as given in Equations (3.22) and (3.23).

P(t) = k · P̂(t)+(1− k) ·P(t−1) (3.22)

Q(t) = k · Q̂(t)+(1− k) ·Q(t−1) (3.23)

P̂(t) and Q̂(t) are the target signal value from the voltage controller limited by the assigned
charging current from the allocation mechanism. The factor k has to be configured to avoid
oscillations, but still reach the target signal value within the desired time. The co-simulation
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Figure 3.9: Control flow in the co-simulation. The different colors highlight grid-related
simulators (purple), charging (green), and QoS control (red). The dotted connections are
time-shifted and respective information flow is used from the last simulation step.

steps in one-minute steps and the target value should be reached the latest after five steps
to provide a fast enough reaction, therefore k is set to 1− 1

e ≈ 0.632.

Figure 3.9 visualizes the control flow of the co-simulation. First, the allocation mechanisms
start with allocating charging current I to the single EVs based on their charging service
parameters (tarr, tdep,Ereq,Pmax,SoC(t), . . .) and the calculated available charging capacity
coming from the power grid simulator. Before actually controlling the charging processes,
the voltage controller calculates the real and reactive power values of the charging service
P̂(t) and Q̂(t) based on the local voltage measurement U . The first-order lag filter stabilizes
the control signal before the parameters are finally sent to the EV model, which charges the
EV according to its battery model and passes the values back to the power grid simulation.
The updated charging service parameters are finally passed to the allocation mechanisms
in the next simulated time step. Similarly, the available current capacity and node voltage
from the power grid simulator close the control loop, which is executed every minute.

3.5.2 Analysis

All the following results are obtained from a 7-day week simulation of the low-voltage
power grid with the aforementioned scenario setup and assumptions. During this simulated
week, the individual EVs require between 1 and 13 charging services, on average 5.06. The
mean energy demand of a charging service is 6.68 kWh, which is approximately 16.7 %
of the assumed battery capacity. The total energy demand of all occurring 557 charging
services is 13.2 % bigger than the total baseline demand of the households.

All the following results are obtained by simulations with 22 kW wallboxes, hence an upper
charging current limitation of 96 A, and transformer limitation at 100 % of the baseline
scenario, hence an upper current limit at the transformer of 263 A. In all the simulations,
the limiting SU was the transformer, hence it is valid to compare all charging services with
each other. Other configurations are investigated in the sensitivity analysis in Section 3.5.3.
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Figure 3.10: Histogram in box plot style that shows the impact of randomness on the QoS1
metric from N = 10 independent simulation runs. Note that for EDF, LLF and DWFQ all
charging services reach the maximum QoS1 value, hence the plots seems to be empty.

3.5.2.1 Impact of Randomness

The simulation scenario is repeated ten times with random charging profile assignments
to the different households. Furthermore, the probabilistic charging allocation mechanism
uses different initial random seeds for the random number generation. Figure 3.10 shows
the histogram of achieved QoS1 over all charging services in box plot style to summarize the
variance of the metric values over multiple random simulation runs. The random location of
the charging services in the power grid does only slightly impact the deterministic queuing
allocation mechanisms, e. g., only very small variations are experienced with PROP and
WFQ. The two probabilistic allocation mechanisms, DCF and EDCA, experience slightly
higher impact from the random seeds, however, the values of the different simulation runs
are still very dense. Because charging control is done on a timescale of 1 min, which
is much smaller than the average available charging time of the charging service, every
charging service needs to sample many random backoff values and, hence, the sampled
random numbers reflect the uniform probability distribution well. At the end, this leads to
stable service quality among all charging services. The remaining QoS and QoE metrics
show similar results.

The two metrics QoS1 and QoE1 can be computed for each time step during the charging
service and the mean metric values with a shaded 95 % confidence interval are shown in
Figure 3.11. It can be seen that even during the charging service there are only minor
differences. In conclusion, the random selection of the EV mobility demand profiles nor
the random number sampling of the exponential backoff algorithms in the probabilistic
allocation protocols have a critical impact on the results. Therefore, the following analysis
is performed on the results of only a single simulation run.
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Figure 3.11: Impact of randomness on the mean QoS1 and QoE1 metric values throughout
the charging service runs using DCF. The very dense shaded green area is the 95 % confi-
dence interval.

3.5.2.2 Quality of Service/Experience and Fairness

First, the obtained metric values for the quality of service and experience of the different
queuing policies and probabilistic allocation mechanisms are analyzed. Figure 3.12 shows
box plots over all 557 charging services, where the mean metric values are indicated by
black circles. Below the box plots, the fairness index F from Equation (3.13) is depicted
for each metric and policy.

All policies of the hierarchical queuing networks achieve high QoS1 values that are close to
1.0 for most charging services, however, the number and variation of outliers vary signifi-
cantly among the queuing policies. EDF, LLF, and DWFQ achieve the maximum quality,
while FCFS, PROP, and WFQ have slightly lower mean values due to many outliers. There
even exist some charging services that do not receive any service at all (E(tdep) = 0) and,
hence, obtain QoS1(tdep) =

E(tdep)
Ereq

= 0. That is the case when charging services are blocked
by other charging services that have higher flexibility but are prioritized by the applied
queuing policy, e. g., FCFS blocks charging services that arrive later. The two probabilistic
protocols DCF and EDCA achieve mean metric values between 0.6 and 0.8, but experience
much greater variation among the different charging services. This can be explained by the
lack of direct coordination, since the probabilistic protocols do not take a coordinated deci-
sion in advance, but base their charging decisions on measured busy and collision signals,
which reduces the overall efficiency of these two methods. The QoS class delay of EDCA
causes additional waiting times, where no EV is charging even though the power grid is not
sensed busy. This further reduces the efficiency of the EDCA compared to the more sim-
plistic DCF approach, which is reflected by a lower mean QoS1 value. Obviously, EDF,
LLF, and DWFQ achieve a maximum fairness index of 1.0, because all charging services
receive equally maximum service. Since WFQ uses the SoC for prioritization, many charg-
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Figure 3.12: QoS and QoE metrics of the different allocation policies for all 557 charging
services. The box plots show the resulting distribution among the charging services and the
circle denotes the mean value. Below the box plots, the achieved fairness index F is given.
Note that for QoS1, QoE1 and QoE2 most of the charging services have very high service
quality, hence the boxes are very near to 1.0.
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ing services with already high SOC at arrival receive no energy at all and, hence, obtain a
QoS1 value equal to zero. This results in a low fairness index of QoS1.

Because QoS2 depicts the finish time of a charging service, it is most relevant for the queu-
ing policies EDF, LLF, and DWFQ, which finish all charging services in time. From these
three policies, EDF and LLF have higher mean metric values (earlier finish times) with
smaller variation (better fairness) than DWFQ, because of their prioritization nature. With
DWFQ policy, charging services that can finish in time receive a very low weight (below
1). Hence, DWFQ does not focus on early finish times but provides each charging service a
share of the available charging current throughout the charging service. Note that the QoS2
metric highly depends on the charging service. Finishing 10 min before departure yields
a better QoS2 value if the total available charging time is smaller. Not finished charging
service receive QoS2 = 0, therefore the QoS2 metric of the other queuing policies and the
two probabilistic approaches range from 0 (not finished) to 1 (finished). Because EDCA
only finishes 126 out of 557 charging services, its QoS2 values are very low.

The two metrics QoS3 (starting time) and QoS4 (power variation) target QoS during the
charging time. All queuing policies except PROP have comparable QoS3 values with a
slightly larger quartile box for WFQ, which results in a lower fairness index. The weight
definition of WFQ is based on the SoC at arrival time instead of the energy requirement of
the charging service, which delays starting of the charging services with an already high
SoC. PROP targets equal charging current for all parallel charging services and, therefore,
offers early starting times to most of the charging services. The two probabilistic methods
are not aware of other parallel charging services and operate by probing whether charging
is possible. This contributes to early charging start times. For QoS4, the mean metric
value of the first three queuing policies (FCFS, EDF, and LLF) is noticeably lower than
with the other methods. This is because the latter also enables variable charging currents,
whereas the first three queuing policies operate as purely time-division multiplexing by
only switching the charging process on and off, which increases the variation in charging
power. Nevertheless, the fairness index is comparable between all approaches, except for
WFQ, which achieves a very low fairness index because many charging services with high
SoC at arrival are not charged at all, which results in QoS4 being equal to 0.

Similar to QoS1, EDF, LLF, and DWFQ achieve maximum quality in QoE1, which mea-
sures the charging service concerning the battery SoC. It can be seen that EDCA improves
over DCF by sorting the charging services into QoS classes, which results in a drastically
reduced number of outliers. That is because EDCA prioritizes charging services with higher
energy requirements, which results in overall better SoC at departure time. This can also
be seen in the improved fairness index compared to DCF. Since a fully charged battery is
not sufficient to reach the next destination for some trips, the QoE2 metric cannot reach the
maximum value for any allocation mechanism. Therefore, all allocation mechanisms work
almost equally well, except DCF and PROP, since they do not apply any preference from
the charging service requirements.

Opposite to QoS4, the QoE3 metric is higher with the queuing policies FCFS, EDF, and
LLF, because they either charge with a maximum charging power or do not charge at all.
EDCA has a very low metric value because the introduced QoS classes create additional
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Figure 3.13: Mean QoS and QoE metric values and fairness index of different allocation
mechanisms.

delays, which in turn reduces the mean charging power during the charging process. Note
that the fairness index is independent of the mean metric value. This can be seen in the case
of EDCA, which obtains the best fairness index, but has the lowest mean metric values.

Figure 3.13 compares the mean QoS and QoE values and the fairness indices obtained by
the different allocation mechanisms. The spider plots clearly show that none of the methods
outperforms the others in all metrics. However, there exist some allocation mechanisms that
are more suitable than others as they achieve better metric values in a subset of the metrics.
The three queuing policies without variable charging currents, namely FCFS, EDF, and
LLF, perform well in QoS2 and QoE3, however, achieve low values in QoS4. From the
probabilistic methods, EDCA has slightly lower mean metric values compared to DCF,
except for a larger gap in QoS2, where a higher number of charging services do not finish.
However, the fairness indices of EDCA are much better, except for QoS3, which is due to
a higher number of charging processes that wait longer to start because of their QoS class
delay. PROP and DCF, which do not consider charging service parameters, have lower
fairness indices for most QoS and QoE metrics, even though they aim for equally distributed
fair resource sharing among connected charging processes. Hence, the in-cooperation of
departure times plays an important role in charging service allocation due to the better
performance of EDF, LLF, and DWFQ.

3.5.2.3 Quality Metrics during the Charging Services

The two metrics QoS1 and QoE1 can also be measured at every point in time during a
charging service. Figure 3.14 depicts the evolution of the QoS1 and QoE1 mean values,
as well as their fairness indices during the charging services. The x-axis is normalized to
range between arrival time tarr and departure time tdep of all charging services, which makes
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Figure 3.14: Mean QoS1 and QoE1 metric values and fairness index during the charging
services using different allocation mechanisms. All charging services are normalized to the
range [tarr, tdep].

them comparable on the same timescale, even though the charging services have different
duration and do not take place at the same time. This re-sampling represents the view of
the EV owner on the charging services.

Figure 3.14(a) shows the evolution of the mean QoS1 value during the charging services.
PROP and DCF have higher mean values in the first half of the charging service because
both aim for equal power-sharing among charging processes, where those with small en-
ergy requirement Ereq benefit with early high QoS1 metric values. Likewise, the fairness
index is reasonably high during this time, as can be seen in Figure 3.14(b). It can also be
identified that EDF and LLF, which focus on early finishing of the charging process, reach
the maximum QoS1 value approximately after 80 % of the time of the charging services.
However, they experience quite low fairness indices during the first half of the charging ser-
vices. DWFQ achieves a nearly linear increase of the mean QoS1 value during the charging
service, while the fairness index is best among the queuing policies that reach maximum
QoS1 at least during the first half of the charging services. For EDCA one can observe a
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slight increase in mean QoS1 value and fairness towards the end of the charging service,
which results from the charging service obtaining a smaller QoS class and, therefore, hav-
ing a higher probability to charge.

From Figure 3.14(c), it can be seen that the mean QoE1 value of all queuing policies evolves
quite similarly during charging services, except for EDF and LLF, which finish their charg-
ing processes earlier. Compared to the other policies, FCFS has a slightly lower value
during the first half of the charging services, because newly arrived EVs are blocked until
all previous charging services are fully served. Only EDF, LLF, and DWFQ finally reach
the maximum at departure time. Because EDF and LLF schedule only maximum charg-
ing power to the most critical charging services with regard to time and remaining avail-
able charging time, both reach the maximum metric value earlier than DWFQ. In contrast,
DWFQ focuses on a fair allocation throughout the whole charging service, which results in
a higher mean quality metric during the first half of the charging service. Although DWFQ
has a slightly lower mean QoE1 value at the last third of the charging service, most of the
time this policy dominates the fairness index shown in Figure 3.14(d) except at the very
end. With a higher fairness index during the first half of the charging service, EVs are
served more fairly in case they need to leave earlier than the planned departure time. Fur-
thermore, it can be expected that DWFQ (and also WFQ) are more robust against malicious
user inputs (e. g., incorrect departure times), because opposite to EDF all charging services
always obtain a portion of the available charging capacity according to their weight. This
aspect is further investigated in Section 3.5.3.4. The mean metric values of the probabilis-
tic protocols are nearly constantly 0.10 points smaller due to lower effectiveness. Despite
EDCA having a slightly lower mean QoE1 value during most of the charging service, its
fairness index is much better than with DCF allocation.

3.5.2.4 Impact on the Low-Voltage Power Grid

DSOs are concerned with the impact of the different allocation mechanisms on the low-
voltage power grid in terms of power quality and grid losses. Regardless of which pol-
icy is used for the hierarchical queuing model, the configured threshold in all simulations
smoothly limits the transformer loading. Figure 3.15(a) shows the transformer loading of
a single day; once the baseline scenario without charging and once with the DWFQ policy.
Except for some short spikes, the transformer is smoothly limited at around 60 kVA, which
is similar to the peak load of the baseline at 10:25. As can be seen, the spikes occur when
the baseline load has abrupt changes, e. g., during the power ramp-up between 8:00 and
9:00 in the morning. Since the SUs decide on the available charging current only based
on the past measurements, these baseline spikes transfer to the aggregated load profile and
balance out in the next algorithm iteration within 1 min. This effect could be dampened by
using a good short-term prediction model instead of a persistence model like used in the
simulation. All the other queuing policies have very similar transformer load profiles.

Figure 3.15(b) shows the transformer loading using the probabilistic DCF protocol. The
fluctuations at the transformer are drastically higher than with the queuing approach. This
is due to the randomized MAC protocol that does not have a global coordinator, and spikes
occur due to randomized probing of the network. Note that the upper transformer limit
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(a) Baseline and central queuing model using DWFQ policy.
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(b) Baseline and probabilistic methods using DCF.
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(c) Aggregated transformer loading using DCF from ten independent simulation runs.

Figure 3.15: Transformer loading during a simulated day.
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Table 3.3: Charging statistics and impact on the low-voltage power grid. Uavg
10min is the

10-minute average voltage value according to EN 50160.

Allocation Mean SoC (QoE1) Min SoC (QoE1) Min Uavg
10min Grid Losses

mechanism [%] [%] [V] [%]

FCFS 99.24 25.31 216.27 6.87
EDF 100.00 100.00 216.99 6.88
LLF 100.00 100.00 217.68 6.75

PROP 98.46 0.00 219.34 5.90
WFQ 98.89 77.09 220.76 5.99

DWFQ 100.00 100.00 220.05 5.99

DCF 90.08 4.10 222.03 5.42
EDCA 93.64 56.80 221.73 5.55

Baseline - - 231.55 0.00
No control 100.00 100.00 176.05 13.06
U-control 100.00 100.00 203.40 12.09

is respected, except for some short violations in the evening when many EVs arrive home.
These spikes cause the collision counters to increase the CW size of the charging processes,
which in turn reduced the number of spikes throughout the night. The probabilistic proto-
cols have lower efficiency in providing energy for the charging service, which is reflected
by the recurrent under-loading of the transformer, especially in the first third of the day.

Numerous spikes and their deep valleys seem to be undesirable from a power grid opera-
tor’s point of view. However, this effect only occurs on a single low-voltage transformer.
Applying the probabilistic protocol to a set of transformers in the same medium voltage
power grid, one can expect a more uniform load profile, similar to Figure 3.15(c), which
shows the sum of the transformer load profiles of the ten independent simulation runs with
different seeds. The graphs for EDCA look similar and are provided in Figure A.1.

Table 3.3 summarizes the achieved mean and minimum SoC at departure time (expressed
by QoE1) of the different allocation mechanisms and also provides power grid statistics
extracted from the power flow simulation. The minimum of the 10-minute average volt-
age values (as defined in EN 50160) from all buses is taken as an indicator for the voltage
impacts of the allocation mechanisms. The grid losses are calculated by comparing the
charged energy of all charging services with the additional energy that passes the trans-
former. Values from the baseline scenario without charging (Baseline), uncontrolled charg-
ing (uncontrolled), and only using the aforementioned local voltage controller (U-control)
are given in Table 3.3 for comparison.

All allocation mechanisms reach an acceptable voltage level, but the three queuing policies
with variable charging rates (PROP, WFQ, and DWFQ) improve the voltage level by more
than 2 V compared to the other queuing policies. This is because the charging capacity is
shared among more charging services, with each receiving a smaller share, thereby reduc-
ing the voltage drop at the charging locations. The minimum 10-minute average voltage
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values of the two probabilistic protocols are higher by more than another 1 V, however,
they come along with high voltage fluctuations due to the probabilistic probing.

In addition, variable charging rates (PROP, WFQ, and DWFQ) reduce grid losses that are
caused due to EV charging by approximately 1 %, which over the simulated week is equal
to the yearly energy consumption of one household (assumed 2000 kWh). Similar applies
to the probabilistic protocols. Note that this study does not consider reduced charging effi-
ciency of EV charging equipment at lower charging rates as stated in Assumption A3. Be-
cause DWFQ achieves maximum SoC, higher minimum 10-minute average voltage value,
and low additional grid losses due to EV charging, it outperforms the other queuing policies
in terms of service and power quality.

3.5.3 Sensitivity of Configuration Parameters

This section analyzes the impact of different configuration parameters on the proposed sys-
tem. Among others, experiments investigate the effect of different scenario setups in terms
of wallbox power rating, the number of EVs, or the transformer limitation. Furthermore,
the impact of the local voltage control on the QoS and fairness of the charging service is
inspected in a separate simulation setup. Finally, the effect of earlier departure times on
service quality and fairness is analyzed.

3.5.3.1 Wallbox Power Rating

The results from Figure 3.12 in metric QoE3 suggest that most of the charging services
do not fully utilize the charging capability of the 22 kW wallboxes, especially with the
methods that allow variable charging currents. To assess the impact of the wallbox peak
power, the same simulation runs are repeated with the maximum charging power at the
wallboxes limited to 11 kW instead of 22 kW. As can be expected, the main difference is a
general improvement of the QoE3 value (wallbox peak power utilization), especially for the
allocation mechanisms with variable charging currents. On the other side, the difference
between the variable and non-variable charging current strategies is reduced in metric QoS4,
which measures the variation of the charging currents. The other metrics only show minor
changes and are summarized in Figure A.2.

None of the allocation mechanisms could fully serve all charging services with wall box
rating of 11 kW, where the best-performing policies EDF, LLF, and DWFQ have one sin-
gle charging service with a SoC of around 93 % at departure. Obviously, the maximum
transformer loading is not influenced by the charging capacity of the wallboxes. However,
according to Table 3.4, the minimum 10-minute average voltage value shows an improve-
ment of more than 2 V, except for the WFQ policy. This is due to the limited charging
power that can be drawn at each node in the power grid, which decreases punctual loads
and increases the number of parallel charging processes. Using an appropriate charging
capacity allocation mechanism, wallboxes with 11 kW peak power are sufficient to serve
almost all charging services, even with a high EV penetration and a transformer peak lim-
ited to 100 % of the baseline load.
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Table 3.4: Charging statistics and impact on the low-voltage power grid of the different
allocation mechanisms and queuing policies with 11 kW wallboxes (difference to 22 kW is
shown in brackets). Uavg

10min is the 10-minute average voltage value.

Allocation Mean SoC (QoE1) Min SoC (QoE1) Min Uavg
10min Grid Losses

mechanism [%] [%] [V] [%]

FCFS 99.09 (↓ 0.15) 19.63 (↓ 5.68) 220.40 (↑ 4.13) 6.00 (↓ 0.87)
EDF 99.99 (↓ 0.01) 93.16 (↓ 6.84) 219.92 (↑ 2.93) 6.07 (↓ 0.81)
LLF 99.99 (↓ 0.01) 93.13 (↓ 6.87) 220.33 (↑ 2.65) 6.02 (↓ 0.73)

PROP 98.28 (↓ 0.18) 0.00 (↓ 0.00) 222.10 (↑ 2.76) 5.60 (↓ 0.30)
WFQ 98.83 (↓ 0.06) 77.09 (↓ 0.00) 221.23 (↑ 0.97) 5.74 (↓ 0.25)

DWFQ 99.99 (↓ 0.01) 93.02 (↓ 6.98) 222.42 (↑ 2.37) 5.75 (↓ 0.24)

DCF 86.47 (↓ 3.61) 1.26 (↓ 2.84) 224.39 (↑ 2.36) 5.01 (↓ 0.41)
EDCA 93.02 (↓ 0.62) 51.88 (↓ 4.92) 224.66 (↑ 2.93) 5.27 (↓ 0.28)

3.5.3.2 Transformer Limit and Vehicle Penetration

For all the simulations above, the number of EVs is fixed to a rather high EV penetration
of two EVs per household. Furthermore, the SU at the transformer is limited to 100 %
of the baseline load. To investigate the effect of both parameters on the performance of
the allocation mechanisms, additional simulations with different numbers of EVs (0.5, 1, 2
EVs per household) and transformer limits (80 %, 90 %, 100 %, 110 %, 120 %, 140 %, and
160 %) are performed.

As can be seen in Figure 3.16, a smaller number of EVs and higher transformer limits do not
impose any problems to finish all charging services, which is depicted by the QoS1 metric.
It can even be expected that with unlimited transformer (and cable) limitations, all policies
work exactly similarly since all charging requests can directly be served and the power
grid will never be sensed busy. However, increasing EV penetration leads to all charging
policies except for EDF, LLF, and DWFQ not fully serving the charging services at high
transformer limits. This is due to a sub-optimal charging capacity allocation to competing
charging services during parallel charging processes. On the other side, a low number of
EVs with small transformer limits mainly cause problems for FCFS and WFQ. One reason
is the blocking behavior of FCFS, which results in short charging service to be not served
at all. The WFQ policy suffers from static weight assignment at arrival time that is only
based on the SoC. Charging services with high SoC receive low service rates independent
of their available charging time. With both a high number of EVs and a low transformer
limit, all allocation mechanisms result in reduced service quality due to the mismatch of
energy demand and supply. However, service degradation is smaller for EDF, LLF, and
DWFQ.

LLF and DWFQ have lower mean QoS1 values than EDF because these two policies use
laxity for prioritization. Compared to EDF, a lower priority is assigned to charging services
with short duration and small energy requirements. As a result, more than twice the number
of unfinished charging services with already high SoC can be counted at departure with LLF
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Figure 3.16: Impact of number of EVs and transformer limit on the mean QoS1 metric
value and its fairness.
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Figure 3.17: Impact of number of EVs and transformer limit on the mean QoE1 metric
value and its fairness.
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and DWFQ policy. However, looking at the mean QoE1 metrics, these charging services
achieve a higher metric score compared to EDF, which is reflected by the fairness index in
Figure 3.17. It is worth mentioning, that DWFQ outperforms the other policies at all EV
and transformer limit configurations while reaching a high mean metric score.

It can be seen that the laxity (LLF and DWFQ) plays an important role in an optimal allo-
cation with restricted resource availability in terms of QoS1 and QoE1. Additionally, the
purely deadline-driven EDF policy performs well, however, results in a few charging ser-
vices with very low SoC at departure, which impacts its fairness. Hence, the best queuing
policy should be chosen to ensure high quality of charging service and fairness even with
highly limited scenarios.

3.5.3.3 Local Voltage Control

The charging service allocation mechanisms in Sections 3.4.1 and 3.4.2 focus on QoS and
fairness of the charging current assignment to single charging processes and only imple-
ment a load management solution. However, the voltage values in the power grid are kept
within allowed boundaries using a local voltage controller at the charging stations. Under-
voltage mitigation is achieved by supplying reactive power to the power grid, which slightly
reduces active power usage to respect the assigned charging current limitations. Ultimately,
the charging real power reduces to zero in case of voltage values below 0.88 p.u.. This
however can cause the charging service to receive lower QoS and, therefore, biases fairness
among the charging services.

To demonstrate the effect of the different charging strategies on QoS and fairness in pres-
ence of local under-voltage, an artificial charging scenario is defined based on a simple
four-node power grid, depicted in Figure 3.18. This power grid contains only two charging
locations (EV1 and EV2) and no further load or generation. A standard (over-sized) 800 kVA
transformer and two 70 mm2 copper cables with lengths 100 m and 400 m connect the four
buses. The values are chosen to experience a voltage drop at charging station EV2, such that
only EV2 needs to supply reactive power during charging. The scenario further schedules
one charging service for each EV , with similar charging requirements, but slightly different
arrival and departure time. EV1 arrives at minute 5 after the simulation start and departs at
minute 205. EV2 arrives at 15 and leaves at 195, hence has a 20 min shorter stay. Both EVs
have a battery of size 40 kWh with a charging efficiency of 100 %, can charge with up to
22 kW, and arrive with 10 % of SoC, hence having very similar laxity.

In case there is no charging current limitation at the transformer, all charging service allo-
cation mechanisms behave similarly by allowing both EVs to charge with their maximum
charging current. However, depending on the voltage value, the local voltage controller
may impact the actual charging rate of the charging process. Consequently, local volt-
age threshold violations may reduce the QoS and, therefore, decrease fairness among the
charging services. This effect cannot be avoided by the allocation mechanisms without
knowing and optimizing the local voltage values, which is not possible under Assump-
tion A8, therefore only the current limitations are considered by design in the QoS-aware
load management.

74 CHAPTER 3 - Electric Vehicle Home Charging Service



EV2

EV1

100 m

400 m

Figure 3.18: Simple low-voltage power grid for investigation of voltage effects on the
charging allocation mechanisms.

In the following experiment, the transformer is limited to only support one EV charging
at a time, hence the available charging current is limited to 22 kVA (32 A per phase). The
resulting SoC curves of the two EVs are depicted in Figure 3.19. It can be seen that with
fully sequential charging (EDF or FCFS) the slope of the SoC curve of EV2 is slightly
smaller than for EV1 due to the required 8.32 kVA reactive power injection, which limits
the active charging power to 17.17 kW (26 % reduced maximum charging power compared
to EV1). As a result, only one EV will be fully charged. The small difference of the final
SoC in Table 3.5 is because with FCFS policy no EV charges after 3:15. LLF prioritizes
the incoming EV2 due to the slightly smaller laxity until both EVs reach the same laxity.
From then on, both EVs are charged sequentially in chunks, such that they keep almost the
same laxity. This iterative switching between the EVs compensates for the lower charging
efficiency of EV2 due to reactive power supply, such that both EVs reach very similar SoC at
departure. All other policies charge both EVs in parallel with reduced charging power. This
results in a smaller voltage drop at EV2 and, therefore, overall less required reactive power.
PROP and WFQ policies perform nearly equally because due to equal energy requirements,
both receive the same weight, which is equal to the proportional allocation of the charging
power. Because the maximum reactive power requirement from EV2 is only −2.59 kVA, the
charging real power only differs by 7 %. As the stochastic variant of PROP, DCF performs
very similarly, but with in total lower efficiency because the transformer is not utilized
with 22 kVA all the time. DWFQ assigns EV2 an 18 % higher charging current compared
to EV1, because of its slightly smaller laxity. Furthermore, the charging power increases
throughout the charging processes to compensate for the lower efficiency of EV2 due to the
reactive power supply. A similar effect can be observed with EDCA, where the charging
rate of EV2 increases towards the end of the charging service, where the lower charging
efficiency due to reactive power causes EV2 to change to a lower QoS class.

Table 3.5 summarizes the findings of the impact of voltage on the QoE1 metric. It can
be seen that only LLF, DWFQ, and EDCA reach a high fairness index, while among them
DWFQ achieves the best single metric values for both EVs. Furthermore, the voltage values
are better for the allocation mechanisms with variable charging currents, which leads to
reduced reactive power requirements and therefore higher efficiency.

In case EVs do not support reactive power injection contrary to Assumption A6, only the
active power reduction according to Figure 3.8 can be applied to mitigate under-voltage
situations. This however amplifies the difference in the maximum possible charging power

3.5 Evaluation 75



0

50

100

So
C

[%
]

FCFS

EV1
EV2

0

50

100

So
C

[%
]

EDF

0

50

100

So
C

[%
]

LLF

00
:0

0

00
:3

0

01
:0

0

01
:3

0

02
:0

0

02
:3

0

03
:0

0

03
:3

00

50

100

Time [hh:mm]

So
C

[%
]

PROP

0

50

100
WFQ

0

50

100
DWFQ

0

50

100
DCF

00
:0

0

00
:3

0

01
:0

0

01
:3

0

02
:0

0

02
:3

0

03
:0

0

03
:3

00

50

100

Time [hh:mm]

EDCA

Figure 3.19: Behavior of different charging strategies in under-voltage events.

Table 3.5: Effect of voltage on the charging service allocation mechanisms.

Allocation EV1 (QoE1) EV2 (QoE1) F(QoE1) Min Uavg
10min Q at EV2

mechanism [%] [%] [%] [V] [kVA]

FCFS 100.00 73.35 62.31 213.13 −8.32
EDF 75.56 100.00 65.43 213.13 −8.32
LLF 90.85 91.45 99.15 215.14 −8.32

PROP 100.00 85.38 79.33 217.87 −2.59
WFQ 100.00 85.37 79.30 217.87 −2.59

DWFQ 96.78 94.66 97.01 217.32 −3.35

DCF 94.41 69.42 64.66 217.01 −1.10
EDCA 86.76 78.53 88.37 217.22 −1.63
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between the two charging processes. Note that in any case, the assigned charging current
capacity is only the allowed upper limit for the EV charging process. First, because local
voltage may force to reduce the charging power and, second, because the communication
protocols between the charging station and EV usually only define upper limits, which may
not be reached, e. g., due to battery temperatures.

3.5.3.4 Departure Time

In Assumption A7 and Section 3.5.1.1, it is assumed that the departure time of a charging
service is known at arrival, and it is a strict deadline. It is further assumed that EV drivers
will most likely visit a fast charging station on their next trip if the SoC of the EV is not
sufficiently high. This is more time efficient than waiting for a full charge at home, which is
usually only slow charging with mode 1 or 2. As already seen in Section 3.5.2.3, the time-
dependent service metrics highly differ among the policies during the charging service. The
following experiments investigate the service quality of charging services when EV drivers
leave earlier than their planned departure time. Therefore, a subset ˆ︁D⊂D of 50 % (20 %)
of all EV drivers D is selected randomly to depart at 50 % (80 %) of their available charging
time. Let ˆ︁Dd

c denote the subset of drivers with cardinality |ˆ︁Dd
c | = c

100 · |D| that depart at
d% of the planned charging stay. Again, ten independent simulation runs are executed with
different seeds to investigate the impact of random subset selections.

First, it can be seen that the random selection of the early departing EVs from the ten in-
dependent simulation runs has little effect on the results, as illustrated by the dense 95 %
confidence interval in Figure 3.20. Second, the mean QoE1 metric in Figure 3.20(a) is
degraded for all early departing EVs in subset ˆ︁D50

50, regardless of which charging service
allocation mechanisms are used. Comparing the three policies with the overall best mean
metric values (EDF, LLF, and DWFQ), the mean service quality degradation of early leav-
ing EVs is very similar. However, the fairness index in Figure 3.20(b) shows the advantage
of the packet weighting approaches, where both WFQ and DWFQ perform well. This is
because all charging processes receive a fair share of the available capacity at every point
in time during the charging service according to their weight and no charging service is
starving. This effect is even amplified with a lower number of early departing EVs, as can
be seen in Figure 3.20(c). On the contrary in Figure 3.20(e), if 50 % of the EVs depart at
80 % of the available charging time, EDF and LLF reach a higher mean SoC and fairness
index than WFQ and DWFQ. This is already implied in Figure 3.14, where EDF and LLF
finish most charging services at around 80 % of the available charging time. Similar results
are obtained with a lower number of EVs that leave earlier, which is given in Figure A.3.

One possible way to improve charging service quality for EV drivers with untrustworthy
user input is to include reputation in the charging power allocation algorithm, like in [6].
Their optimization-based approach integrates the reputation of how accurately the user
predicts its departure time in the allocation prioritization. However, in reality, it is not that
simple to detect whether a user entered the wrong departure times or simply was parking
longer than planned. In addition, EV drivers that typically predict well (usually overnight,
where there is enough energy available) can still game the system for a single charging
service, which will not sustainably reduce their reputation.
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Figure 3.20: Impact of earlier departure on the charging service quality.
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3.6 Applicability

This section deals with the practical implementation of the queuing network from Sec-
tion 3.4.1 and the probabilistic protocols from Section 3.4.2, respectively. Thereby, possi-
ble application scopes are introduced, to which the proposed approaches may be deployed
in real-life. Furthermore, potential technical and legal challenges are discussed, as well as
ideas for further extension.

3.6.1 Scope of Application

The charging service allocation mechanisms allow limiting charging capacity resources
(infrastructure as well as energy availability) while ensuring the quality of charging service
to the EV driver. This offers potential for different applications in the power grid, where
three are discussed in the following.

• The charging service allocation mechanisms can be applied to avoid or postpone
power grid infrastructure expansion in the low-voltage power distribution grids,
while ensuring high quality of EV charging service and, therefore, acceptance from
the users. Grid expansions are usually required in older low-voltage power grids that
are built in the 1980s and before, without large PV or EV penetration considered
in the planning horizon. The proposed charging service allocation mechanisms can
increase infrastructure utilization, while ensuring that EV charging does not harm
the power grid stability in terms of overloading and voltage problems. Power grid
expansion can thus be avoided or at least postponed if rapid increase in EVs cannot
be accommodated by sufficiently rapid power grid expansion.

The proposed approaches require measurement devices in place at the critical as-
sets of the power grid and the software components, e. g., the SUs, can be deployed
in a cloud computing environment, where only communication connections to the
measurement device and the wallbox controllers are required. The cost for mea-
surement and cloud computing infrastructure is usually less than the expected power
grid expansions, as shown by the European project ELECTRIFIC for a very similar
setup [131]. As a positive side effect, continuous power grid measurements provide
insights into the actual power grid situations to the DSOs, which usually operate
their low-voltage power grids without monitoring. This may help to better under-
stand the operation of their low-voltage power grids and may lead to an improved
future power grid planning process. However, an ICT-based solution as an alterna-
tive to power grid expansion carries the risk of cyberattacks that can not only disturb
service operations but also damage the power grid infrastructure.

• The allocation mechanisms can also be used to align EV charging demands with
renewable energy generation by reducing the available charging current at times
with low renewable energy generation. This can be achieved in the queuing network
by modifying the algorithm at the root SU to reduce the available charging current at
times when low renewable generation is available in the power grid. In the case of
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the probabilistic protocols, respective busy and collision signals can be sent at lower
threshold levels. For a smooth transition, first, the busy threshold is reduced for at
least a charging frame duration, before the collision threshold is adapted. Increasing
the total available charging current is done in the opposite order. Such a control
strategy has the potential to increase the use of renewable energies for EV charging
while considering the quality of charging service during charging current assignment.

Note that the use of local renewable energy is indirectly strengthened even without
variable charging current control at the transformer. Local generation reduces the
transformer loading, which in turn increases the available charging current in the
low-voltage power grid. As a result, more EVs can charge during the availability of
local renewable energies. In energy communities with high local renewable gener-
ation, the proposed charging service allocation mechanisms can be used to achieve
high autarky by configuring the transformer threshold to zero. This will only charge
the EVs using surplus energy from the energy community while the charging ser-
vice allocation ensures high quality of service and fairness among the community
members.

• Finally, the aggregated EV charging demand at the root SU can be offered to the
flexibility market, while ensuring service quality during disaggregation to the sin-
gle EVs. This however is only possible with the queuing network approach, because
the probabilistic protocols do not offer a bi-directional communication channel to the
SUs. Hence, the flexibility potential is not known at SUs. With the queuing networks,
it is possible to offer positive and negative flexibility since the maximum charging
requirement can be extracted from the charging requests, and in addition to the as-
signed charging currents, it is possible to estimate the positive and negative charging
flexibility at the current moment. To trade flexibility on the market, a prediction of
the EV charging demand is required for a given time horizon.

3.6.2 Technical Challenges

Some technical challenges exist that need to be addressed before applying the proposed
methodology to the field. First, targeting Assumption A7, an easy way for the EV driver to
provide relevant data is required. This includes static information on the wallbox and the
EV specifications, e. g., maximum charging rate, battery model, battery capacity, as well
as charging service-specific parameters, e. g., current SoC at arrival time and during the
charging processes, and the planned departure time tdep. Most of these parameters can be
queried automatically from the EV via ISO 15118 or the cloud service of car manufacturers.
Otherwise, the user can enter this information into a mobile application that serves as an
interface to the charging-as-a-service platform. Missing data could be derived from histor-
ical charging behavior. However, the performance of the proposed methods on estimated
charging parameters is not validated in this thesis and requires further investigation.

A second technical challenge is the behavior of real EVs, which may differ from Assump-
tions A2 - A6. The assumptions on EV charging controllability fit very well with exist-
ing standards, however, the battery management system of the EV could cause different
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charging behavior, e. g., due to battery overheating or during the battery saturation phase.
Similarly, the reaction time of EVs on control signals may influence the actual outcome of
the algorithms. Finally, EVs that lack reactive power control capabilities can only partici-
pate with real power reduction in under-voltage mitigation, which drastically influences its
received quality of charging service.

The reaction of one real and one emulated EV on varying charging signals is analyzed by
the author of this thesis in a joint publication with Alyousef et al. in [11]. While the charg-
ing algorithm from this paper is different from the proposed solutions, the experimental
results from the power-hardware-in-the-loop co-simulation at the laboratory of the Aus-
trian Institute of Technology show pretty well how EVs react to charging signal changes.
In this setup, a real and an emulated EV is connected to a charging station with a Type 2
charging outlet. The varying charging signals from the algorithm are sent to the EV via
the IEC 61851-1 PWM specification of the charging outlet, as detailed in Section 2.3. Fig-
ure 3.21 compares the charging signal (dotted line) with the emulated/real behavior of an
EV . It can be seen that in both cases the EV follows the charging signals with only minor
deviation: (i) The emulated EV reaches its battery saturation phase in which the charging
signal of 22 kW can no longer be followed and the EV gradually reduces its charging power
despite a constant charging signal. (ii) Sometimes the expected charging power from the
charging signal does not match exactly with the actual charging demand. However, the
charging power of the EV does at no point in time overshoot the charging signal. Conse-
quently, charging control via PWM signaling in Type 2 charging outlets works sufficiently
well for being used by QoS-aware charging-as-a-service algorithms.

The same control algorithm from [11] is tested in the context of the European project ELEC-
TRIFIC in a low-voltage power grid in Bavaria, Germany [4, 31]. Figure 3.22 shows the
reactive power behavior of control signals sent to an EV that can only control the upper
current that limits the apparent power, but not the power factor. As can be seen, when the
charging power is 10 kW or more – which corresponds to 45 % of the maximum charging
rate of 22 kW – the lagging power factor is greater than 0.9. Below this utilization, the
power factor decreases nearly linearly. The EV charging stopped with a minimum charging
power of 3 kW, where the lagging power factor is 0.4, which translates to reactive power of
approximately 6.9 kVA. This shows that with legacy EVs one needs to consider that their
converters are designed to optimally operate in the region of the rated charging power. This
contradicts Assumption A4, where a constant efficiency is assumed with reduced charging
currents. Since controllable charging processes will become more important, it can be ex-
pected that newer EVs are built with better-performing converters, even at lower charging
currents. In addition, the communication standard ISO 15118 foresees the option to control
active and reactive power separately.

Another outcome of the field trials of the research project is that communication from a
measurement device via a cloud-based charging control algorithm to the final reaction of
the EV takes less than 1 min [4]. Thereby, the reaction of the EV after setting the control
variable at the charging station is almost instantaneous. This confirms the feasibility of a
one-minute control loop for a smart charging cloud architecture as proposed in Section 3.4.1
based on the Assumption A11.
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(a) Simulated charging signal with the reaction of an emulated EV . At the end of the charging
process, the emulated EV reaches its saturation phase and reduces its charging power gradually.
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(b) Simulated charging signal with the reaction of a real EV . The tested real EV follows nearly the
simulated power, except for delayed reactions.

Figure 3.21: Reaction of a real and an emulated EV on charging signals [11].
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Figure 3.22: Reactive power behavior of an EV with reduced charging power [31].
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3.6.3 Legal Framework

In Germany, there is by law (EnWG §14a) the option for controllable consumer devices
in low-voltage networks. This regulation enforces the power grid operator to charge re-
duced grid usage fees if in turn the controllable device is agreed to be used for power grid
supporting purposes and the device is metered with a separate grid metering point. These
controllable consumer devices include EV charging, heat pumps, air conditioning, night
storage heaters, and electrical energy storage systems. The amendment of EnWG §14a in
mid of 2022 highlights the usage of controllable consumer devices for peak shaving pur-
poses, which allows delayed power grid expansion, and leaves the concrete regulation and
implementation to the Federal Network Agency12. Legislation foresees the use of the Ger-
man SMGW [25] solution to communicate control signals to consumer devices. However,
this does not impact the proposed approach. On the contrary, the SMGW can establish the
connection between the wallboxes and the first supplying SU and can provide access to
local power grid measurement data such as the local voltage values.

The proposed charging service allocation mechanisms are superior to the discussed peak
shaving applications in the context of EnWG §14a, where EVs and heat pumps are mainly
considered switchable loads that are either on or off. As the experiment results in Sec-
tion 3.5.2 show, reduced charging power at all charging processes at the same time can
help to allocate available charging currents in a more service-oriented and fair manner,
while on the other hand also stabilizing the voltage levels.

3.6.4 Possible Extension with Coordinated Voltage Control

In the simulation setup, a local droop-based feedback controller stabilizes the local voltage
level. Despite its simplicity and utilization in power grid connection standards, it has been
shown that such controllers allocate reactive power in a sub-optimal manner [97], which
leads to unnecessary grid losses. The distributed algorithm in [97] solves overvoltage events
with nearly minimum grid losses by utilizing reactive power capabilities of the DRESs at
the node that is located nearest to the node with the highest measured voltage value, also
called the regulated node [96]. The same concept can be applied to EV charging, where
the EV injects reactive power to mitigate under-voltage events. Because low-voltage power
grids have a high R/X ratio, the reaction of local DRESs/EVs at the regulated node might
not be sufficient to fully mitigate the voltage violation, but other nearby nodes can support.
In order to minimize the grid losses, the approach of [97] selects the next best node accord-
ing to the sensitivity matrix, which measures the impact of reactive power variations on the
voltage at the regulated node. The sensitivity matrix of the power grid is calculated using
the time-invariant line impedance (following the approach in [23]) instead of the inverse
Jacobian matrix. In this way, the sensitivity matrix, and thus the corresponding delay times
for the algorithm, can be precomputed based on the power grid topology only. For a given
voltage variation at a certain node, a node with higher sensitivity will need to absorb/inject
less reactive power than a node with lower sensitivity. Reactive power absorption/injection
in low-voltage power grids correlates with power losses due to higher current flows. Conse-

12in German: Bundesnetzagentur
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quently, selecting a node with high sensitivity and therefore low reactive power contribution
will result in near-minimum power losses [97].

This nearly optimal reactive power allocation can easily be integrated into the hierarchical
queuing network, where the local voltage measurement is sent along the hierarchical power
grid infrastructure, similar to a charging request, and the maximum (minimum) voltage
node is determined centrally at the root SU. The result is sent back to the charging pro-
cesses together with the charging current assignment packets. In the case of the distributed
probabilistic protocols, only a uni-directional communication channel from the SUs to the
charging processes exists. However, the determination of the maximum (minimum) volt-
age node can be done using a modified max-consensus protocol, as the author of this thesis
has investigated for the DRES use-case in [36]. Thereby, every agent of the voltage control
network iteratively shares its local information state only with its direct neighbors. Upon
reception of a message, every agent updates its local information state to point to the new
regulated node, before sending the updated information state to its neighbors in the next
communication round. Eventually, all connected agents converge to the regulated node
within a limited number of iterations. In [36] different communication overlay networks
are investigated with regard to convergence time and required traffic. The simplest overlay
network is a local broadcast network, where all agents (reactive power agents and purely
measurement agents) communicate only with the nearest direct neighbors, e. g., via meshed
communication network like Zigbee. Alternatively, a static minimum ring topology could
be embedded in the underlying communication network. Finally, a sensitivity ring is pro-
posed, which includes the sensitivity matrix to dynamically construct a ring network, where
the next neighbor is determined based on its sensitivity on the currently known regulated
node. This ensures that nodes with high impact on the regulated node are informed quite
early in the ring and hence react faster on voltage events. The simulation results show that
the optimal overlay network depends on the underlying communication infrastructure and
is a trade-off between convergence time and total required traffic. Most important, the re-
sults show that communication delay should not be neglected when designing a distributed
voltage regulation mechanism [36].

3.7 Chapter Summary

This chapter introduces a model for EV charging-as-a-service that represents a charging
service by three main parameters: arrival time, departure time, and required energy to
be charged during the available charging time of the charging service. This definition is
followed by a set of QoS and QoE metrics that quantitatively measure the performance of
EV charging allocation mechanisms with regard to the quality of the charging service and
its perception by the EV driver.

Two charging allocation mechanisms to control distributed EV charging services in the
power distribution grid are introduced. The first one is based on hierarchical queuing net-
works that are built on top of the radial power distribution grid, where each EV requests
charging current packets that are then assigned by different queuing policies. Among oth-
ers, the proposed DWFQ policy uses the remaining energy to be charged and the residual
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available charging time to prioritize charging services. The second mechanism implements
MAC protocols, known from the networking domain, on the charging service allocation
problem. Thereby, each EV reacts to busy and collision signals from power grid assets
by sampling probabilistic waiting time intervals according to a BEB strategy. The simple
CSMA/CA-based method is extended with means of controlling QoS from wireless net-
works, where different QoS classes prioritize charging services. Additional waiting time
is introduced for low-priority charging services and the exponential waiting time interval
after a collision is limited for high-priority charging services.

The two allocation mechanisms are evaluated on a co-simulation of the IEEE 906 low-
voltage test feeder using charging patterns from a mobility survey in Germany to capture
realistic driving behavior. Furthermore, a sensitivity analysis investigates the impact of the
simulation configuration parameters. Finally, this chapter discusses different application
scopes of the proposed methods as well as potential technical and legal challenges. The
main findings of the chapter are as follows.

• None of the discussed allocation mechanisms and policies outperforms all others in
all seven considered QoS and QoE metrics. However, results show that laxity of the
charging service – as it is used by the proposed DWFQ policy – plays an important
role to achieve high mean metric scores for the most important metrics: Charged
energy and the resulting SoC level of the EV measured by QoS1 and QoE1.

• When it comes to fairness, it is important to consider the metric evolution over time
during the charging service. This is important especially when EVs need to leave
earlier than their planned departure time.

• With intelligent smart charging, all charging services in the simulated low-voltage
power grid can be served sufficiently with a charging power limitation of the original
baseline peak load, even at high EV penetration. This is possible due to the high
flexibility of EV home charging. In addition, allocation methods that reduce charg-
ing currents during the charging process are superior to sequential charging policies
when it comes to voltage levels and grid losses.
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CHAPTER 4
Power Flexibility Service from
Battery Storage of Home
Energy Management Systems

This chapter discusses the smart grid application of flexibility provision-as-a-service to dis-
tributed Energy Management Systems (EMSs), where required additional assumptions are
introduced in Section 4.1. The following Section 4.2 describes the Mixed Integer Linear
Programming (MILP) model of the EMS published in [37], which optimally schedules lo-
cal appliances such as EV charging and a stationary Energy Storage System (ESS). This
EMS optimization model can also integrate external flexibility requests by adding addi-
tional constraints to the planning problem. For trading flexibility on the energy market,
multiple EMSs are combined into a flexibility pool, which acts as a resource aggregating
Virtual Power Plant (VPP). Besides flexibility resource aggregation, the resource aggrega-
tor must disaggregate a flexibility request to the single EMSs. Section 4.3 discusses related
QoS aspects and fairness of flexibility provision. In Section 4.4, two heuristic methods for
flexibility request disaggregation are presented. The linear heuristic published in [37] is
described in Section 4.4.1 and a meta heuristic based on a Genetic Algorithm (GA) pub-
lished in [33] is detailed in Section 4.4.2. Both methods are evaluated in terms of QoS on
household load and PV generation data from real installed EMSs in Section 4.5. Thereby,
the meta heuristic also includes the power flow simulation of the same low-voltage power
grid that is introduced during evaluation in Section 3.5.1.2. Finally, the applicability of the
proposed solutions and possible extension for aFRR as Ancillary Service (AS) in terms of
reserve power requests are discussed in Section 4.6, before a concluding summary is given.

[33] Dominik Danner, Robin Huwa, and Hermann de Meer. “Multi-objective flexibility dis-
aggregation to distributed energy management systems”. In: ACM SIGEnergy Energy
Informatics Review 2.2 (June 2022), pages 1–12.

[37] Dominik Danner, Jan Seidemann, Michael Lechl, and Hermann de Meer. “Flexibility
disaggregation under forecast conditions”. In: Proceedings of the Twelfth ACM Interna-
tional Conference on Future Energy Systems. e-Energy ’21. Virtual Event, Italy: Asso-
ciation for Computing Machinery, June 2021, pages 27–38.
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4.1 Assumptions

In addition to the general Assumptions A1 - A7 on EV charging in Section 2.5, which also
apply in this chapter, further assumptions on the power distribution grid and the EMSs are
made. These assumptions are discussed in the following. Note that Assumptions A8 - A11
are explicitly not required in this chapter.

Power Grid

A12 All required parameters of the power distribution grid are provided such that power
flow equations can be solved. This includes the power grid topology, the impedance
of the cables, as well as any other power system equipment in place. This information
is usually available by the DSO. Alternatively, a black box service is required for
estimating the grid losses and voltage level violations when applying certain power
grid profiles at the grid connection points of the EMSs.

A13 Flexibility requests that are assigned to a single EMS are applied to their locally
planned grid profile. When aggregating flexibility to a flexibility pool, grid losses
that occur due to the spatial distribution of the EMSs in the power distribution grid are
not considered during disaggregation. This fits the general idea that parties connected
to the grid are measured and accounted for at their grid connection point, and grid
losses are dealt with by the power system operator. This creates a natural objective
for the DSO to minimize grid losses, which is tackled by the fitness function f2 in
Section 4.4.2.1.

Energy Management System

A14 The ESS can change its charging and discharging rate nearly instantaneously between
the minimum and maximum limitations and these changes apply nearly instanta-
neously without ramp-rate limitations. Even though the offline EMS optimization
usually runs with a 15-minute time resolution, a nearly instantaneous reaction within
a few seconds is required to achieve the planned energy quantities within the time
slots. Communication and control delay of local EMS and battery chemistry are fast
enough as discussed in Section 2.4.

A15 Similar to Assumption A5, the stationary ESS is modeled with constant-current
charging/discharging. High charging and discharging powers, which may be affected
by the battery saturation phase, are minimized by objective O4.1 in Section 4.2, and
reaching the saturation phase itself is reduced by objective O4.2, which aims to avoid
high and low battery SoC. Furthermore, the efficiency factor – as the ratio between
charged energy to discharged energy – is assumed to be constant and not influenced
by external factors, e. g., battery temperature, which is anyhow more stable compared
to EVs since stationary ESS are typically installed inside a building.
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A16 Forecast models for PV generation and household load exist that provide expected
generation and load profiles in the desired time resolution. These forecast models
further specify their error probability function P(X = x), which defines the probabil-
ity for having a forecast error of x. Ideally, the error distribution is symmetric around
zero to avoid error aggregation over time. Possible forecast models are discussed by
the co-authors in [37].

A17 The ESS of an EMS can offer automatic frequency control as AS to the power grid.
This typically requires specific hardware controllers in place that measure the power
grid frequency and activate charging or discharging of the battery accordingly, e. g.,
using a droop-based frequency-watt controller as defined by the SunSpec Model 134.
This assumption is relevant for the possible extension toward reserve power flexibil-
ity scheduling in Section 4.6.4.

4.2 Power Flexibility Model

In contrast to the online control methods for EV charging in Chapter 3, this chapter consid-
ers offline planning of different behind-the-meter appliances that are managed by an EMS,
including EV charging and stationary ESS. This section discusses the MILP modeling and
external flexibility request scheduling to the EMS, as well as flexibility aggregation into
flexibility pools.

4.2.1 Home Energy Management System

The Energy Management System (EMS) of a single household consists of several non-
controllable and controllable assets, which can be utilized to maximize the use of energy
from local PV installations while respecting user-specific constraints such as the planned
departure time of the EVs or storage limitations of a stationary ESS. This scheduling prob-
lem can be solved using the following MILP, which determines optimal operation profiles
for all appliances that are managed by the EMS. The MILP problem is defined over a dis-
crete time horizon with T time slots of length ∆t , t = 1, . . . ,T and optimizes one ESS and
up to N EV charging processes.

4.2.1.1 Decision Variables and Constraints

The indices, parameters, and decision variables of the MILP optimization problem are sum-
marized in Table 4.1 and are detailed for each appliance in the following paragraphs.

Electric Vehicle Charging EV charging processes can be specified by their available
charging time αi(t), the minimum required energy Ereq

EV,i, and hardware-specific charging
limitations. In European households mainly AC charging with Type-2 connectors is in-
stalled, which do not support V2G operation as stated in Assumption A2. According to
the control capabilities of IEC 61851-1, which are explained in Section 2.3, the maximum
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Table 4.1: Indices, parameters, and decision variables of the MILP grouped by appliances.

Type Symbol Unit Description

In
di

ce
s t ∈ {1, . . . ,T} Index for time slot t

i ∈ {1, . . . ,N} Index for EV charging process i

Pa
ra

m
et

er
s

E
M

S

∆t > 0 h Size of the time slot

cbuy(t) > 0 ct/kWh Power grid energy cost

PPV(t) ≥ 0 kW PV generation forecast

PHH(t) ≥ 0 kW Household load forecast

Pmax
G (t) ≥ 0 kW Upper power grid limit

Pmin
G (t) ≤ 0 kW Lower power grid limit

E
V

αi(t) ∈ {0,1} EV is available (1) or not (0)

µEV,i ∈ (0,1] Charging efficiency

Pmin
EV,i ≥ 0 kW Minimum charging power

Pmax
EV,i ≥ Pmin

EV,i kW Maximum charging power

Emax
EV,i > 0 kWh Energy storage capacity

E init
EV,i ∈ [0,Emax

EV,i] kWh Initially stored energy

Ereq
EV,i ∈ [0,Emax

EV,i−E init
EV,i] kWh Energy requirement

E
SS

µESS ∈ (0,1] Efficiency

Pmax
ESS ≥ 0 kW Maximum (dis-)charging power

Emax
ESS ≥ 0 kWh Energy storage capacity

E init
ESS ∈ [0,Emax

ESS ] kWh Initially stored energy

V
ar

ia
bl

es

E
M

S

PGrid(t) ∈ [Pmin
G (t),Pmax

G (t)] kW Grid profile (dependent variable)

E
V MEV,i(t) ∈ {0,1} Charge (0) or do not charge (1)

PEV,i(t) ∈ [0,Pmax
EV,i ] kW Charging power

E
SS

MESS(t) ∈ {0,1} Charge (0) or discharge (1)

P+
ESS(t) ∈ [0,Pmax

ESS ] kW Charging power

P−ESS(t) ∈ [0,Pmax
ESS ] kW Discharging power

EESS(t) ∈ [0,Emax
ESS ] kWh Stored energy (dependent variable)
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current of these charging stations is only controllable in the range between 6 A to 32 A per
phase. Hence, the problem formulation must ensure that if an EV i is charging, it charges
with a minimum charging power of Pmin

EV,i. Therefore, two decision variables are defined for
each time slot t, and each EV charging process i.

MEV,i(t) ∈ {0,1} (4.1)

PEV,i(t) ∈
[︁
0,Pmax

EV,i
]︁

(4.2)

The integer variable in Equation (4.1) encodes whether to charge (MEV,i(t) = 0) or not
charge (MEV,i(t) = 1), and the variable in Equation (4.2) defines the used charging power.
To ensure a minimum charging power, the constraint in Equation (4.3) must hold, which
further limits PEV,i(t) to {0}∪ [Pmin

EV,i,P
max
EV,i ]. Note that the relatively small charging power

steps from Assumption A3 are neglected during the offline planning since the planning is
based on (inaccurate) PV and Household (HH) forecasts and, hence, when applying the
schedule the nearest power step can be chosen.

Pmin
EV,i ≤ Pmax

EV,i ·MEV,i(t)+PEV,i(t)≤ Pmax
EV,i (4.3)

If the EV decides to not charge (MEV,i(t) = 1), the only option for the charging power is
0 kW, whereas charging is only possible with Pmin

EV,i ≤ PEV,i(t) ≤ Pmax
EV,i , which guarantees

that each EV receives its minimum charging power. Additionally, the constraint in Equa-
tion (4.4) ensures that an EV can only be charged when the EV is available (αi(t) = 1). If
it is available, MEV,i(t) can be chosen arbitrarily, otherwise MEV,i(t) must be equal to one
and the EV cannot charge.

MEV,i(t)+αi(t)≥ 1 (4.4)

The following constraint in Equation (4.5) ensures that the minimum required energy is
charged by each EV charging process. Thereby, the charging process is modeled as constant
current charging with a constant efficiency factor µEV,i as stated in Assumptions A3 and A5.

Ereq
EV,i ≤

T

∑
t=1

PEV,i(t) ·∆t ·µEV,i ≤ Emax
EV,i−E init

EV,i (4.5)

Note that the interdependence of the battery SoC between two charging processes of the
same EV is not considered, because this would require a forecast of the actual energy
consumption of the trip, including potential public charging processes, which is out of
scope of this thesis.

Energy Storage System The second and most flexible appliance is the ESS. In contrast to
EVs, the ESS is always available and supports bi-directional charging. To model charging
and discharging, three decision variables are defined for each time slot t.

MESS(t) ∈ {0,1} (4.6)

P+
ESS(t) ∈ [0,Pmax

ESS ] (4.7)

P−ESS(t) ∈ [0,Pmax
ESS ] (4.8)
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Equation (4.6) indicates whether to charge (MESS(t) = 0) or discharge (MESS(t) = 1) the
ESS, and the variables in Equation (4.7) and (4.8) define the respective charging and
discharging power, which can be changed nearly instantaneously according to Assump-
tion A14. To avoid simultaneous charging and discharging, two additional constraints in
Equations (4.9) and (4.10) are required.

0≤MESS(t) ·Pmax
ESS +P+

ESS(t)≤ Pmax
ESS (4.9)

0≤ (1−MESS(t))·Pmax
ESS +P−ESS(t)≤ Pmax

ESS (4.10)

If the solver decides to discharge the ESS (MESS(t) = 1), the constraint in Equation (4.9)
fixes the charging power P+

ESS(t) to be equal to zero and Equation (4.10) allows any dis-
charging powers in the interval [0,Pmax

ESS ]. In the case of ESS charging, Equation (4.10) fixes
the discharging power to zero, and Equation (4.9) allows for charging with any power val-
ues. Note that two solutions exist for neither charging nor discharging the ESS (MESS(t) =
0;P+

ESS(t) = 0 and MESS(t) = 1;P−ESS(t) = 0), nevertheless the overall profile of the ESS,
which is calculated by PESS(t) = P+

ESS(t)−P−ESS(t), stays the same. The time-varying energy
stored in the ESS is modeled by a dependent decision variable EESS(t) in Equation (4.11),
where EESS(0) = E init

ESS. As stated in Assumption A15, the charging and discharging of the
ESS uses a constant current model with constant efficiency factors µESS and 1

µESS
which

results in a round-trip storage efficiency of (µESS)
2.

EESS(t) = EESS(t−1)

+
(︁
P+

ESS(t) ·∆t ·µESS
)︁
−
(︃

P−ESS(t) ·∆t ·
1

µESS

)︃
(4.11)

Energy Management System Finally, the EMS must operate its appliances within oper-
ational constraints. First, (time-dependent) power grid limitation must be considered, e. g.,
limitations of the grid connection fuses or maximum PV feed-in during peak hours. There-
fore, the power grid profile, which measures the power flow at the grid connection point
of the EMS, is calculated using a dependent decision variable PG(t) and the linear equality
constraint in Equation (4.12). Time-dependent power grid limitations are applied using the
constraint in Equation (4.13).

PG(t) = PHH(t)+

(︄
N

∑
i=1

PEV,i(t)

)︄
+PESS(t)−PPV(t) (4.12)

Pmin
G (t)< PG(t)< Pmax

G (t) (4.13)

Note that the MILP formulation assumes a perfect forecast of PHH(t) and PPV(t), even
though Assumption A16 states that the forecast models may experience forecast errors.
One way to deal with forecast uncertainty in offline optimization is using stochastic opti-
mization [157]. However, the integration of stochastic optimization into the MILP would
drastically increase the complexity of the model. Therefore, during optimal EMS behind-
the-meter schedule optimization a perfect forecast is assumed and stochastic behavior is
only considered during the power flexibility provision in Section 4.2.2.
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Second, to avoid critical reverse power flows, it is preferable to not charge an ESS from
the power grid or to discharge the ESS to the power grid. Both restrictions can be modeled
with the following two constraints in Equations (4.14) and (4.15), where Pdiff(t) = PPV(t)−
PHH(t)−∑

N
i=1 PEV,i(t) describes the PV surplus or deficit load of the EMS.

P+
ESS(t)≤ Pdiff(t)+MESS(t) · (Pmax

G (t)+Pmax
ESS ) (4.14)

P−ESS(t)≤−Pdiff(t)+(1−MESS(t)) · (Pmin
G (t)+Pmax

ESS ) (4.15)

In the case of power surplus (Pdiff(t)> 0), only charging the ESS (MESS(t) = 0) is permitted
by Equation (4.15), which would become infeasible otherwise. Furthermore, the charging
power P+

ESS(t) is limited by the surplus Pdiff(t) in Equation (4.14). During a power deficit
(Pdiff(t)< 0), only discharging the ESS (MESS(t) = 1) is permitted by Equation (4.14) with
the discharging power P−ESS(t) limited by Pdiff(t) in Equation (4.15).

4.2.1.2 Multi-Objective Function

To optimally utilize the flexibility of all local appliances, the EMS solves the MILP problem
with the following optimization objectives with hierarchical priorities.

Cost Optimization The main goal of the EMS is to minimize the total operational cost
by minimizing the cost of consuming energy from the power grid, which in turn maximizes
the degree of energy autarky of the EMS. Furthermore, storing local surplus PV generation
into the EVs or the ESS optimizes self-consumption. Both goals are expressed by objective
O1 in Equation (4.16).

O1 =
T

∑
t=1

Pbuy
G (t) ·∆t · cbuy(t)

− cmean ·
(︁
EESS(T )−E init

ESS
)︁
· (µESS)

2

− cmean ·
N

∑
i=1

T

∑
t=1

PEV,i(t) ·∆t ·µEV,i

(4.16)

Since objective O1 is minimized and cbuy(t)> 0, the helper variable Pbuy
G (t)=max(0,PG(t))

can be linearized by the two constraints in Equations (4.17) and (4.18).

Pbuy
G (t)≥ 0 (4.17)

Pbuy
G (t)≥ PG(t) (4.18)

In addition, the cost objective O1 prices the stored energy in the ESS and the EVs with the
average buying cost cmean = 1

T ∑
T
t=1 cbuy(t). This favors storing PV generation for later use,

while the load is served from the grid in case of below-average energy costs. Note that
feed-in tariffs are not supported in the objective function and the final objective value does
not express the actual payment stream.
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Electric Vehicle Profile Shaping Besides cost optimization, also the shape of EV charg-
ing profiles is important because EVs should be charged in blocks to avoid charging inter-
rupts during the charging process. This is essential if multiple EVs are managed by the
same EMS to avoid continuous switching between the charging processes. Block charging
can be achieved by minimizing the absolute difference between consecutive charging pow-
ers with O2 = ∑

N
i=1 ∑

T−1
t=1 |PEV,i(t)−PEV,i(t +1)|. As a positive side effect, the EV charging

profiles will be constant as well as possible, which has a positive impact on the battery
SoH. Minimization of an absolute value can be done with helper variables B+

i (t) ≥ 0 and
B−t (t)≥ 0 and the constraint in Equation (4.19).

PEV,i(t)−PEV,i(t +1) = B+
i (t)−B−t (t) (4.19)

The objective function O2 is redefined in Equation (4.20) using these helper variables.

O2 =
N

∑
i=1

T−1

∑
t=1

(︁
B+

i (t)+B−t (t)
)︁

(4.20)

Peak Shaving In favor of the DSO, the EMS should yield smooth power grid profiles
to avoid peaks at aggregation points in the power grid. Additionally, smooth power grid
profiles allow the EMS to compensate for PV generation and household load forecast errors,
because of larger safety margins towards the grid limits. Therefore, the difference between
the maximum grid consumption and the minimum grid feed-in is minimized by objective
O3 in Equation (4.21). The max(.) and min(.) functions can be reformulated to linear
equations similarly as explained for objective O1.

O3 = max
t=1,...,T

(PG(t))− min
t=1,...,T

(PG(t)) (4.21)

EMS Flexibility The last objective of the EMS is to utilize the ESS in a way such that it
allows providing maximum flexibility during online operation to compensate for forecast
errors. Therefore, the difference between the maximum charging and discharging power of
the ESS is minimized in Equation (4.22), which provides a safety margin of the ESS power
flexibility. Second, the mean SoC of the ESS is kept near 50 % to ensure energy flexibility,
which is encoded in Equation (4.23). In this way, power and energy flexibility can likely
be provided in both directions.

O4.1 = max
t=1,...,T

(P+
ESS(t))+ max

t=1,...,T
(P−ESS(t)) (4.22)

O4.2 =

⃓⃓⃓⃓
⃓12Emax

ESS −
1
T

T

∑
t=1

EESS(t)

⃓⃓⃓⃓
⃓ (4.23)

Both flexibility objectives O4.1 and O4.2 can be reformulated to avoid absolute values |.| and
max(.) functions by applying the aforementioned techniques. Because both objectives fo-
cus on the same decision variables, they are combined using linearization with normalized
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weights β1 =
1

2Pmax
ESS

and β2 =
1

1
2 Emax

ESS
to form objective O4 in Equation (4.24).

O4 = β1O4.1 +β2O4.2 (4.24)

The overall MILP problem of the EMS is a multi-objective optimization problem that is
solved hierarchically with decreasing prioritization in the dimensions. The MILP formula-
tion is given by

min
MEV,i(t),PEV,i(t),MESS(t),P+

ESS(t),P
−
ESS(t)

(O1,O2,O3,O4)

subject to (4.3) − (4.5), (4.9) − (4.15), (4.17) − (4.19).

First, objective O1 is minimized and an additional constraint is added to the problem for-
mulation using the resulting minimum value ˜︁O1 as in Equation (4.25). Then, the second
objective is to minimize the remaining solution space, and so on.

Ok = ˜︁Ok (4.25)

Thereby, the required additional amount of energy and the best time for demanding from
the power grid is determined first. Afterward, the EV charging processes are scheduled in
a blocked manner and the power grid profile is shaped. Finally, the usage of the ESS is
optimized to provide future flexibility in case of forecast errors. Note that the cost of the
optimal solution can be determined by only solving the first objective O1 of the MILP prob-
lem due to the hierarchical optimization approach. However, to obtain the final power grid
profile, all objectives must be solved hierarchically, since the last objective O4 optimizes
the usage of the ESS, which can potentially impact the power grid profile.

4.2.2 Power Flexibility Scheduling

The MILP formulation of the energy optimization problem of a household can be used to
schedule external flexibility requests to the EMS, which are finally delivered by the flexible
appliances. This flexibility provided by the EMS does not need to consider ramp-rate limi-
tations, because EVs can change their charging power nearly instantaneously according to
Assumption A3, and flexibility provided by the ESS is instantaneously available according
to Assumption A14.

Power Flexibility Request The power flexibility provided by an EMS at time t is de-
fined as the deviation from the optimal power grid profile at the grid connection point from
a previous optimization run and is given by the variable Pflex(t). A power flexibility re-
quest Pflex(t) to the EMS can be scheduled by fixing the grid profile with an additional
constraint as in Equation (4.26), where ˜︁PG(t) is the optimal grid profile of a previous opti-
mization run.

PG(t) = ˜︁PG(t)−Pflex(t) (4.26)
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The upper and lower flexibility bounds can be determined by maximizing and minimizing
the flexibility variable accordingly as in Equations (4.27) and (4.28).

Pmax
flex (t) = max

MEV,i(t),PEV,i(t),MESS(t),P+
ESS(t),P

−
ESS(t)

Pflex(t) (4.27)

Pmin
flex (t) = min

MEV,i(t),PEV,i(t),MESS(t),P+
ESS(t),P

−
ESS(t)

Pflex(t) (4.28)

Note that in some cases a value of Pflex(t) cannot be scheduled within the boundaries
[Pmin

flex (t),P
max
flex (t)], because the only available flexible appliance is an EV , which requires

a minimum power to charge. However, the ESS can compensate for these small power gaps
in most cases.

Figure 4.1(a) shows the optimal operational profiles of an exemplary EMS with one PV
system, an ESS (Emax

ESS = 12kWh, Pmax
ESS = 9kW), and one EV charging process (Ereq

EV,1 =

2.55kWh, Pmin
EV,1 = 4.3kW, Pmax

EV,1 = 11kW, available between 4:45 and 7:45). In this setup,
∆t is equal to 15min, cbuy(t) is constant for all time slots, and the ESS is not allowed to
charge from the grid or discharge to the grid. Possible power flexibility of the power pro-
file at the grid connection point (black solid line) is shown by the gray-shaded area, where
negative flexibility (area above the grid profile) is mainly limited by EV availability and
positive flexibility is limited by PV generation that is stored into the ESS. Figure 4.1(b)
shows the same EMS, where power flexibility of −1.5 kW is scheduled between 12:00 and
13:00. The MILP decides on when to optimally compensate required energy for the flexi-
bility request, which results in a grid profile with almost constant additional feed-in during
PV generation. Because the MILP problem is used for offline day-ahead planning, com-
pensation of the energy flexibility can also take place in advance, before the time of the
flexibility request, like it is done between 11:00 and 12:00. If no compensation effect is
desired at any time t ′, the flexibility request profile Pflex(t ′) can be fixed to zero and the
MILP solution will stick to the initial profile from the previous optimization run.

Power Flexibility Cost The cost γ(x) of a flexibility request x is the difference between
the cost of the optimal EMS solution before (Ob

1) and after (Oa
1) scheduling of the power

flexibility request. Only the first objective (cost objective) is used because due to the hi-
erarchical optimization, the latter objective optimizations cannot impact the minimum cost
value. Furthermore, because Ob

1 is minimal, scheduling a flexibility request cannot yield a
smaller objective value (Ob

1 ≤ Oa
1) and, therefore, the cost of flexibility in Equation (4.29)

is always greater or equal to zero.

γ(x) = Oa
1−Ob

1 (4.29)

The exemplary flexibility request in Figure 4.1 results in zero cost, because the energy cost
is constant during the day and the power flexibility is provided by shifting the ESS charging
operation. However, scheduling a power flexibility request during the EV availability from
4:45 to 7:45 will yield a flexibility cost in case the EV must be charged at non-optimal
times before PV generation to fulfill the flexibility request.
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(a) Optimal EMS profile before scheduling flexibility.
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(b) Optimal EMS profile after scheduling power flexibility of −1.5 kW between 12:00 and 13:00.

Figure 4.1: The exemplary EMS with ∆t = 15min consists of one PV system with an hourly
forecast, one EV charging process between 4:45 and 7:45, and an ESS with Emax

ESS = 12kWh,
Pmax

ESS = 9kW.
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Power Flexibility Uncertainty The forecast error of PV generation and household load
can impact the probability to deliver a flexibility request. The forecast errors in Equa-
tions (4.30) and (4.31) are calculated by subtracting the actual values from the predicted
values. A positive error refers to a lower actual value than expected.

ξPV(t) = PPV(t) − ˆ︁PPV(t) (4.30)

ξHH(t) = PHH(t)− ˆ︁PHH(t) (4.31)

PV generation and household load inversely impact the total grid demand profile PG(t).
Therefore, the combined forecast error is calculated according to Equation (4.32), where a
positive error refers to a lower actual grid demand than expected.

ξ (t) = ξHH(t)−ξPV(t) (4.32)

For example, let there be an optimistic PV generation forecast of 8 kW at an arbitrary
time slot, although the actual generation is only 5 kW. For the same time slot, let there
be a pessimistic load forecast of 5 kW, although the actual demand is 2 kW. The positive
PV forecast error ξPV(t) = +3kW and the positive load forecast error ξHH(t) = +3kW
however result in a combined forecast error of 0 kW, which will not have any effect on the
uncertainty of flexibility delivery.

In contrast to public charging stations, where EVs show up randomly, the EMS optimization
focuses on private charging, for which arrival and departure times are known according to
Assumption A7. Short deviations of EV availability and energy requirement can be covered
by the ESS and, hence, these are not considered for flexibility delivery uncertainty.

If not provided along with the forecast models as stated in Assumption A16, the error
distribution function of the forecast models can be obtained by applying kernel density
estimation on the empirical distribution function of the forecast error of a large data set of
PV generation and household load forecasts. The required empirical data can be recorded
by the EMS. The error distribution function defines the probability of a forecast model
to forecast with a certain error. For scheduling flexibility requests to an EMS, it is most
interesting to determine the probability of a certain maximum error value x, for which the
flexibility request cannot be delivered anymore. The probability Pt(X ≤ x) is expressed by
the Cumulative Distribution Function (CDF), which can be created for each time slot t of a
day, as depicted for hourly data in Figure 4.2. As can be seen, the PV forecast error mainly
impacts the error distribution during daylight, while the error distribution during the night
has a narrow dispersion.

The delivery probability ρ(x) of a flexibility request x depends on the certainty of the
forecast models. For example, if a positive flexibility request is scheduled with the maxi-
mum possible power flexibility of an EMS, any negative forecast error directly impacts the
feasibility of the flexibility request. With a safety margin between the scheduled power
flexibility and the maximum possible power flexibility, additional flexibility can be used to
compensate for forecast errors and to deliver the planned grid profile. The delivery prob-
ability ρ(x) ∈ [0,1] of a power flexibility x = Pflex(t) is calculated as in Equation (4.33),
which considers the positive and negative flexibility limits.
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Figure 4.2: Hourly CDF curve of combined PV and household forecast error [37].

ρ(x) =

{︄
1−Pt(X ≤ x−Pmax

flex (t)) if x > 0

Pt(X ≤ x−Pmin
flex (t)) else

(4.33)

Note that flexibility is planned against the forecast grid profile of the EMS and is finally
delivered by the controllable assets, which adopt their operational profile. Uncertainty
however is a matter of uncontrollable PV generation and household load profiles. In the
case of forecast errors, the flexibility is still delivered by the controllable assets, while the
uncertain PV and household load profiles determine the feasibility range at the EMS.

4.2.3 Flexibility Aggregation to Virtual Power Plants

A single EMS does not provide sufficient power flexibility to be traded on the energy mar-
ket. Therefore, multiple EMSs are aggregated in flexibility pools, sometimes integrated into
a VPP. To avoid multi-indices, but still identify EMS e out of K EMSs of the flexibility pool,
a context notation J.Ke is used, where variables inside the brackets refer to EMS e.

Because the flexibility aggregator does not have insight into the EMS optimization, it only
aggregates the power flexibility boundaries provided by the EMSs, between which it as-
sumes that flexibility requests are feasible. The upper and lower boundaries of the flexibil-
ity pool are determined as in Equations (4.34) and (4.35).

Pmax,Pool
flex (t) =

K

∑
e=1

q
Pmax

flex (t)
y

e
(4.34)

Pmin,Pool
flex (t) =

K

∑
e=1

q
Pmin

flex (t)
y

e
(4.35)

Note that during flexibility provision the aggregator must ensure to not assign more power
flexibility to a single EMS than it can deliver according to its local boundaries.
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To disaggregate a flexibility request PPool
flex (t) at time t to the K EMSs, an algorithm needs to

decide to which portion each EMS e = 1, . . . ,K contributes to the flexibility request. The
disaggregation is defined by a vector x =

(︁
JPflex(t)K1 , . . . ,JPflex(t)KK

)︁⊺ containing flexibility
requests to each EMS of the pool, where the condition in Equation (4.36) must hold. Note
that according to Assumption A13, grid losses are not considered during disaggregation
and the flexibility is accounted for at the grid connection point of the EMSs.

PPool
flex (t) =

K

∑
e=1

xe (4.36)

The disaggregation of a power flexibility request (PPool
flex (t))t∈T over multiple time slots t ∈

T ⊆ {1, . . . ,T} is represented by a matrix as in Equation (4.37). Each row vector is the
power flexibility delivered by one EMS over all time slots T and each column vector is the
disaggregation of the power flexibility request to the EMSs at a single time slot.⎛⎜⎝JPflex(t1)K1 . . .

q
Pflex(t|T|)

y
1

...
. . .

...
JPflex(t1)KK . . .

q
Pflex(t|T|)

y
K

⎞⎟⎠ ∈ RK×|T| (4.37)

A flexibility disaggregation is called feasible if all EMSs can schedule their power flexibility
requests. The cost of power flexibility disaggregation is the sum of individual costs for
each EMS and is calculated in Equation (4.38). Similarly, the delivery probability is the
multiplication of delivery probabilities of the single EMSs given in Equation (4.39).

γ
Pool(x) = ∑

t∈T

K

∑
e=1

Jγ(Pflex(t))Ke (4.38)

ρ
Pool(x) = ∏

t∈T

K

∏
e=1

Jρ(Pflex(t))Ke ∈ [0,1] (4.39)

4.3 Power Flexibility Provision Assessment

Based on the MILP formulation of the EMSs and the flexibility service aggregation to flex-
ibility pools, this section details QoS and QoE parameters for the different participating
actors, as well as fairness considerations for flexibility provision as-a-service. Since this
smart grid application is different from the EV charging service in Chapter 3, the actors
and their expectations, and therefore the quality metrics, differ. First, a stationary ESS is
available round-the-clock and its usage is not limited to a certain duration throughout the
day. Second, the goal and usage of the stationary battery capacity are different compared
to EV batteries. An ESS is typically used in conjunction with PV systems to store surplus
energy for later self-consumption, however, there is no requirement for a minimum charge.
Moreover, the MILP problem is used for offline flexibility planning, which guarantees that
the EV is charged with its required energy within the available charging time by the con-
straint in Equation (4.5). Therefore, the QoS and QoE metrics from Chapter 3 are not listed
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as part of the metrics for the resource provider. Furthermore, the main goal of the EMS is to
maximize energy autarky and self-consumption by objective O1 in Equation (4.16), which
contradicts the goal of the online charging service allocation in Chapter 3.

4.3.1 Quality of Service

In the context of this work, the QoS of the power flexibility provision service is defined by
the following criteria, which consider the view of the resource provider and the resource
aggregator. The metric value numbering continues from the last chapter with document-
wide unique metric identifiers.

Resource Provider The first aspect the resource provider cares about is to which extent
its EMS contributes to a power flexibility request to the flexibility pool. Higher participa-
tion in flexibility delivery corresponds to a higher payment by the resource aggregator for
providing flexibility. Consequently, the individual resource providers may perceive this as a
higher service quality.13 On the contrary, a low flexibility contribution or not being selected
at all corresponds to low service quality. The participation of an EMS can be measured pro-
portionally to the total flexibility request to the pool as given in Equation (4.40). Absolute
flexibility power values are used because a positive flexibility request to the flexibility pool
can theoretically result in a combination of positive and negative flexibility requests to the
single EMSs, which together deliver the flexibility request of the pool.

QoS5 =
∑t∈T J|Pflex(t)|Ke ·∆t

∑
K
d=1 ∑t∈T J|Pflex(t)|Kd ·∆t

∈ [0,1] (4.40)

As the second quality criterion, the resource provider may care about the direct effect of
flexibility scheduling on its locally optimal EMS schedule. Since the MILP performs a
hierarchical optimization on a four-dimensional objective vector (O1,O2,O3,O4) with de-
creasing priority, the loss of optimality is computed by the difference of the objective value
before and after scheduling the flexibility. The metric is calculated as in Equation (4.41) no
matter if it is a flexibility request for a single time slot or over multiple time slots. To take
care of the objective prioritization, the weights ωk decrease by one order of magnitude for
each objective k (ω1 = 103,ω2 = 102,ω3 = 101,ω4 = 100).

QoS6 =−
4

∑
k=1

ωk · (Oa
k−Ob

k) (4.41)

If an EMS does not participate in the flexibility delivery (QoS5 = 0), there is logically
no deviation from the optimal schedule and, hence, QoS6 = 0 as well. On the contrary,
any participation in the flexibility request can yield very small to large deviations from
the optimal schedule depending on how the flexibility is provided. Ultimately, there even
exists flexibility participation that does not impact the objective vector at all. This is the

13Compensation should be at least as high as the cost γ(x) of the scheduled flexibility request. A merit-order
principle could be implemented to determine the final reward for the resource provider.
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case when the optimal solution after scheduling the flexibility request resides within the
solution space of the original MILP problem (without scheduled flexibility) after adding
the last hierarchical objective value of O4 to the constraints.

Resource Aggregator Besides the resource provider, also the resource aggregator can
have expectations from the flexibility disaggregation service. The first QoS metric of power
flexibility provision is the total costs of the disaggregation vector, which is calculated in
Equation (4.42). Lower cost of flexibility delivery is seen as higher service quality from
the perspective of the resource aggregator and vice versa.

QoS7 =−γ
Pool(

(︁
JPflex(t)Ke

)︁
e∈{1,...,K},t∈T) (4.42)

There exists a nearly linear relation between the optimality metric QoS6 of a single resource
provider and the cost of flexibility delivery since the first objective O1 is used to determine
the cost of the flexibility schedule. However, for QoS6, the lower-priority objectives may
additionally influence the metric value, so that the two metrics express slightly different
service expectations. Moreover, QoS7 measures the total cost of flexibility provided by the
flexibility pool, where a single highly non-optimal EMS does not necessarily result in a
high aggregated flexibility cost.

The resource aggregator further cares about the probability of flexibility delivery, because
this impacts the possibility to trade the flexibility on the energy market. The respective
metric QoS8 calculates the mean delivery probability and is given in Equation (4.43).14

High flexibility participation (high QoS5) may cause the EMSs to operate near their limits,
which consequently lowers the delivery probability depending on the CDF of the forecast
model. However, since QoS5 is measured proportional to the flexibility request to the pool,
high participation can yield a high delivery probability if the total request is rather small.

QoS8 =
1

K · |T|

K

∑
e=1

∑
t∈T

Jρ(Pflex(t)Ke ∈ [0,1] (4.43)

4.3.2 Quality of Experience

In contrast to QoS5, which measures proportional participation in a flexibility request, the
first QoE metric refers to the participation capabilities of the single EMS. If an EMS utilizes
a large portion of its local flexibility potential, this corresponds to a high QoE for the
resource provider. On the contrary, small local flexibility utilization results in a low QoE
metric value. Thus, the quality metric depends on the size of the flexibility request. The
calculation of QoE4 is given in Equation (4.44), where h(t) measures the request-specific
flexibility limits and is defined in Equation (4.45).

QoE4 =
∑t∈T |Pflex(t)| ·∆t

∑t∈T |h(t)| ·∆t
∈ [0,1] (4.44)

14The mean value is chosen instead of the multiplication in Equation (4.39) because the resource aggregator
may tolerate and compensate a few low delivery probabilities by single EMSs.
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h(t) =

{︄
P̌min

flex (t) if Pflex(t)≤ 0
P̌max

flex (t) else
(4.45)

The minimum and maximum flexibility limits of an EMS at time t depend on scheduled
flexibility at all other time slots of the flexibility request (Pflex(t))t∈T . Therefore, P̌min

flex (t)
and P̌max

flex (t) are re-calculated for each time slot t with flexibility scheduled for all other
time slots t ′ ∈ T \ {t}. Note that again the absolute values for power flexibility and flexi-
bility limits are used because a flexibility request may contain both positive and negative
flexibility at different times over multiple time slots.

Second, the resource provider is concerned about the achieved degree of self-consumption,
which is defined as the percentage of the produced PV energy that is locally consumed or
stored in the ESS. The maximum self-consumption of 100 % means that the whole energy
produced by the PV system is directly consumed and no energy is sold to the grid at any
point in time. The metric calculation is defined in Equation (4.46), where the feed-in power
of the EMS is given by the negative power value Psell

G (t) = min(0,PG(t)).

QoE5 = 1− ∑
T
t=1

⃓⃓
Psell

G (t)
⃓⃓
·∆t

∑
T
t=1 PPV(t) ·∆t

(4.46)

The calculated self-consumption can theoretically be smaller than zero if the battery has a
high initial SoC and all energy is sold to the grid.15 This however is avoided by objective
O1 in Equation (4.16), which minimizes the energy sold to the grid.

A third QoE metric for EMSs is the degree of energy autarky, which is defined as the
percentage of the local energy consumption that is covered by PV generation or discharging
the ESS. The maximum autarky of 100 % means that local consumption is entirely supplied
by PV generation or indirectly by stored PV energy from the ESS, thus no energy from the
grid is needed. The autarky metric is calculated in Equation (4.47).

QoE6 = 1− ∑
T
t=1 Pbuy

G (t) ·∆t

∑
T
t=1
(︁
PHH(t)+∑

N
i=1 PEV,i(t)

)︁
·∆t

(4.47)

Since the ESS is not allowed to be charged from the power grid by the constraint in Equa-
tion (4.14), the power grid profile can never exceed the local consumption and, hence,
Pbuy

G (t)≤ PHH(t)+∑
N
i=1 PEV,i(t) for any time slot t ∈ {1, . . . ,T}. Lifting this constraint may

result in a negative autarky because energy charged from the power grid reduces the energy
autarky of the EMS in the given time horizon.

Self-consumption and autarky measure the performance of the MILP and are orthogonal to
the utilization of the local flexibility potential. However, a flexibility request may decrease
the percentage of self-consumption or autarky due to sub-optimal local appliance schedul-
ing. The degree of self-consumption and autarky are orthogonal since the first refers to the
generation of the PV system and the second refers to the consumption of the EMS.

There is no QoE metric for the resource aggregator because trading of aggregated flexibility
on the market is beyond the scope of this thesis and this chapter mainly focuses on the EMS

15This is only possible if the EMS constraints from Equation (4.14) and (4.15) are lifted.
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modeling. Nevertheless, a QoE metric for the resource aggregator may cover expected and
realized earnings from the flexibility market.

4.3.3 Fairness

The algorithms described in the following section disaggregate a flexibility request to the
EMSs of one flexibility pool. Hence, fairness cannot be measured between different flexi-
bility pools, but only among the EMSs of the same flexibility pool. Therefore, the resource
aggregator quality metrics QoS7 and QoS8 are not considered for fairness analysis. Never-
theless, a fair distribution of the quality metric to the resource providers is in the sense of
the resource providers and the aggregator.

Again, the fairness index from Equation (2.3) is used to measure the fairness of QoS and
QoE distributions among the EMSs of a flexibility pool. All metrics defined in Equa-
tions (4.40) - (4.47), except QoS6 and QoS7 in Equations (4.41) and (4.42), are bounded
within the interval [0,1].16 Since L = 0 and H = 1, the index can be simplified similarly
as in Equation (3.13). The maximum value H of QoS6 is equal to zero, but the minimum
value L is unbounded. To have a comparable fairness index, L is determined by the min(.)
function over all metric values from the different EMSs. The unbounded metric QoS7 is not
considered for fairness evaluation, as it only reflects a single value for the flexibility pool.

4.4 Methodology

This section discusses two heuristics to assign individual flexibility requests to the EMSs of
a flexibility pool that together deliver the requested flexibility. The first method is a linear
heuristic that schedules the flexibility request to a single time slot after each other. The
second method is based on a Genetic Algorithm (GA), which targets multiple objectives
and iteratively optimizes all time slots of the flexibility request at once, starting with an
initially generated set of possible assignments.

From the perspective of the resource aggregator, an optimal flexibility provision should
yield both low total cost and high delivery probability. Unfortunately, this cannot be
achieved using linear optimization, because the objective function would be non-linear
(flexibility delivery probability) or can only be computed at the EMS (flexibility cost).

4.4.1 Iterative Linear Heuristic

The linear heuristic algorithm iteratively assigns portions of the flexibility request (with a
maximum size of Smax) to the most appropriate EMS, which is determined by a disaggre-
gation priority function p(JPflex(t)Ke)→ R, until the flexibility request for a specific time
slot t is fully scheduled. This priority function must decrease monotonically with increas-
ing assigned power flexibility to ensure correctness. Flexibility requests to multiple time
slots are solved iteratively, starting with the earliest time slot in T.

16No negative self-consumption and autarky values are measured in all conducted experiments.
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Algorithm 4.1: Heuristic algorithm to disaggregate positive flexibility.

Input: Flexibility request to the flexibility pool PPool
flex (t)> 0

Data: Disaggregation priority function p(JPflex(t)Ke)→ R,
maximum flexibility portion size Smax > 0

Output: Disaggregation vector
(︁
JPflex(t)K1 , . . . ,JPflex(t)KK

)︁
1 if PPool

flex (t)< PPool,max
flex (t) then

2 ∀e = 1, . . . ,K : JPflex(t)Ke← 0 ; // Initialize EMSs

3 F ←
{︂

e = 1, . . . ,K :
r

Pmax
flex (t)> 0

z

e

}︂
; // feasible EMSs

4 Prem
flex (t)← PPool

flex (t) ; // Remaining flexibility
5 while Prem

flex (t)> 0 do
6 pmax←−∞;
7 foreach e ∈ F do
8 Se←min

(︂
Smax,Prem

flex (t),
r

Pmax
flex (t)−Pflex(t)

z

e

)︂
;

9 if p(JPflex(t)Ke +Se)> pmax then
10 pmax← p(JPflex(t)Ke +Se);
11 d← e ; // Select EMS d
12 end
13 end
14 JPflex(t)Kd ← JPflex(t)Kd +Sd ;
15 Prem

flex (t)← Prem
flex (t)−Sd ;

16 if
r

Pmax
flex (t) = Pflex(t)

z

d
then

17 F ← F \d;
18 end
19 end
20 return

(︁
JPflex(t)K1 , . . . ,JPflex(t)KK

)︁
21 end

The disaggregation algorithm for positive flexibility is given in Algorithm 4.1, negative
flexibility is scheduled accordingly. The algorithm starts with initializing required vari-
ables (lines 2 - 4), before iteratively assigning flexibility portions (lines 14 - 18) to the
EMS with the highest priority value, determined in lines 6 - 13. Because the set of feasible
EMSs F is unordered, an EMS is randomly selected if several EMSs yield the same priority
value. Note that this algorithm assigns only positive requests to the EMSs and, hence, no
balancing between EMSs is performed to optimize the priority function value. Allowing
a disaggregation vector with non-uniform signs may also imply a higher total cost for the
flexibility because additional negative flexibility must be compensated by the remaining
EMSs. Furthermore, power distribution grid limitations are not considered explicitly by the
disaggregation algorithm, however, the grid losses and voltage levels obtained by a disag-
gregation vector can be checked with power flow analysis. Alternatively, the distributed
EMSs should only be allowed to offer limited flexibility, e.g. by restricting the parameters
Pmax

G (t) and Pmin
G (t) or by implementing concepts like flexibility quotas proposed in [175].
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In the following, different policies are discussed together with their priority functions for
positive flexibility. Priority functions for negative flexibility are constructed similarly.

Equal (EQUAL) With equal disaggregation, each EMS receives an absolute equal share
of the flexibility request, unless it is infeasible. In that case, limited EMSs will use their
maximum possible flexibility, and the remaining EMSs have an equal share of flexibility
provisioning. The priority function is given in Equation (4.48). This policy implements the
water-filling algorithm.

pEQUAL(JPflex(t)Ke) =−
⃓⃓
JPflex(t)Ke

⃓⃓
(4.48)

Proportional (PROP) With proportional disaggregation, each EMS receives a flexibility
request proportional to its maximum possible flexibility. The priority function in Equa-
tion (4.49) ensures a proportional fair disaggregation with respect to local capabilities de-
fined by QoE4 in Equation (4.44).

pPROP(JPflex(t)Ke) =−

t
Pflex(t)
Pmax

flex (t)

|

e

(4.49)

Cost-optimal (COST) With cost-optimal disaggregation, the total flexibility cost, de-
fined in Equation (4.38), is minimized by the priority function in Equation (4.50).

pCOST(JPflex(t)Ke) =−Jγ(Pflex(t))Ke (4.50)

The continuous relaxation of the MILP constraint set is convex as well as the affine-linear
objective function O1. As a result, the solution space is convex and the objective function
O1 increases monotonically with increasing scheduled flexibility. The cost-optimal policy
implements a merit-order curve for scheduling flexibility to a single EMS. The iterative
algorithm in Algorithm 4.1 heuristically takes the EMS that provides the next flexibility
portion with the lowest overall flexibility cost, which is equal to stepping through the com-
bined merit-order curve of the flexibility pool with step size Smax.

Probability-optimal (POPT) With probability-optimal disaggregation, the overall prob-
ability from Equation (4.39) is maximized. Assuming that the sum of all flexibility proba-
bilities of the EMSs is constant, all probabilities must be identical to maximize the product
of probabilities according to Lemma 1. Hence, the first objective is to equalize the probabil-
ities between the EMSs. Because the product of all probabilities is continuous, it is enough
to reach an arbitrary near value to equality in order to obtain a value near the maximum.
Following Lemma 2, the maximum possible product of all single probabilities is greater if
the sum of the probabilities is greater, and therefore the second objective is to maximize
the sum of the probabilities. Both objectives can heuristically be achieved with the priority
function in Equation (4.51).

pPOPT(JPflex(t)Ke) = Jρ(Pflex(t))Ke (4.51)
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Lemma 1
Let K ∈ R+

0 , a1, . . . ,an ∈ R+
0 such that ∑

n
i=1 ai = K and f : {Rn|∑n

i=1 ai = K} →
R : (a1, . . . ,an) ↦→∏

n
i=1 ai.

∀i = 1, . . . ,n : ai =
K
n

assumes a maximum in f (a1, . . . ,an)

PROOF Assume there is a vector (b1, . . . ,bn) that yields a maximum value for ∏
n
i=1 bi,

but has different values at indices k and m, k ̸=m. Let d > 0, bk =
K
n −d and bm = K

n +d,

then bk ·bm =
(︁K

n

)︁2−d2 <
(︁K

n

)︁2, hence ∏
n
i=1 bi not maximal. ■

Lemma 2
Let K1,K2 ∈ R+

0 , K1 < K2, a1, . . . ,an,b1, . . . ,bn ∈ R+
0 such that ∑

n
i=1 ai = K1 and

∑
n
i=1 bi = K2.

max
a1,...,an

n

∏
i=1

ai < max
b1,...,bn

n

∏
i=1

bi

PROOF Without loss of generality we assume that K2 = K1 + 1. Let a1, . . . ,an be
values that yield the maximum for ∏

n
i=1 ai where ∑

n
i=1 ai =K1. Define ∀i∈ {1, . . . ,(n−

1)} : bi = ai, bn = an +1 and ∑
n
i=1 bi = K2, then obviously K1 < K2 and

max
a1,...,an

n

∏
i=1

ai = an

n−1

∏
i=1

ai < (an +1)
n−1

∏
i=1

ai =
n

∏
i=1

bi ≤ max
b1,...,bn

n

∏
i=1

bi . ■

Since ρ(.) decreases monotonically with increasing flexibility, selecting the EMS with the
highest probability will narrow down the differences between EMSs as well as possible.
On the other hand, if all probabilities are already close, selecting the EMS with the highest
probability value will keep the sum of probabilities high as well.

The aforementioned flexibility disaggregation procedure works for disaggregating a flexi-
bility request in a single time slot. Flexibility requests that cover multiple time slots T are
disaggregated by Algorithm 4.2, where the linear heuristic starts with the earliest time slot
t1 ∈ T. Afterward, each EMS re-computes its optimal grid profile (PG(t))t=1,...,T , consid-
ering the scheduled flexibility at time t1. Because the aggregation of these new EMS grid
profiles may deviate from the original aggregation, to which the flexibility was requested,
a potential deviation at the second time slot t2 ∈ T must be compensated by adding or sub-
tracting the difference in line 3. This procedure is executed until eventually all time slots
of the flexibility request are scheduled. In case a disaggregation is not feasible at any time
slot t ∈ T, the flexibility request (PPool

flex (t))t∈T cannot be fulfilled.

This iterative approach may not find a globally optimal flexibility disaggregation for all
time slots, since a modification of already processed time slots may help to improve the
metric function of other time slots. This is because the linear heuristic only ensures a nearly
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Algorithm 4.2: Heuristic algorithm to disaggregate flexibility over multiple time
slots.

Input: Flexibility request to the flexibility pool
(︂

PPool
flex (t)

)︂
t∈T

Data: Original aggregated grid profile of the pool(︁
PPool

G (t)
)︁

t∈T =
(︁
∑

K
e=1 JPG(t)Ke

)︁
t∈T

Output: Disaggregation matrix
(︁
JPflex(t)Ke

)︁
e∈{1,...,K},t∈T

1 foreach t ∈ T do
2 P̌Pool

G (t)← ∑
K
e=1

q
P̌G(t)

y
e ; // Updated grid profile

3 PPool
flex (t)← PPool

flex (t)+
(︂

P̌Pool
G (t)−PPool

G (t)
)︂

; // Compensate difference

4
(︁
JPflex(t)K1 , . . . ,JPflex(t)KK

)︁
← disaggregate(PPool

flex (t)) ; // Algorithm 4.1
5 foreach e = 1, . . . ,K do
6 schedule(JPflex(t)Ke) ; // Equation (4.26)
7 optimize(e) ; // Solve MILP
8 end
9 end

10 return
(︁
JPflex(t)Ke

)︁
e∈{1,...,K},t∈T

optimal solution of flexibility disaggregation for one single time slot. When disaggregating
multiple time slots at once, Algorithm 4.2 can be executed with different permutations of
the time slots in line 1. Nevertheless, the iterative flexibility disaggregation in the correct
time order is reasonable when the linear heuristic is used for online flexibility disaggre-
gation, where past flexibility allocations cannot be changed anymore and future flexibility
requirements are not known in advance.

4.4.2 Genetic Meta Heuristic

Compared to the linear heuristic, the meta heuristic schedules flexibility requests to mul-
tiple time slots at once. Thereby, one possible solution – in the context of GAs called
chromosome – is represented by a matrix as already defined in Equation (4.37), where each
column vector models a gene of the chromosome. The GA targets multiple objectives from
different stakeholders at the same time, which are encoded by the fitness function that mea-
sures the optimality of a chromosome. The GA fitness function includes (i) the resource
aggregator, who wants to minimize the cost for flexibility while maximizing the probabil-
ity of delivery; (ii) the grid operator, who wants to minimize grid losses; (iii) the resource
provider (EMS owner), who wants to maximize the level of autarky and self-consumption;
(iv) the fairness service provider, who wants to ensure that among EMSs a fair level of
autarky and self-consumption is reached. Thereby, the internals of the power grid and the
EMS optimization are treated as black boxes, which allows the flexibility disaggregation
service to be easily implemented by the resource aggregator. Moreover, the GA allows a
posteriori selection of a schedule from the Pareto-set [46], which is beneficial if multiple
different stakeholders are involved with unknown elasticity to their objectives.
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Algorithm 4.3: Initial population sampling for the GA. random(.) samples a uni-
form random value from an interval or a uniform element from a set.

Input: Flexibility request to the flexibility pool
(︂

PPool
flex (t)

)︂
t∈T

Output: Initial population set Π0
1 Π0← /0;
2 while |Π0|< µ do
3 C← 0K,|T| ; // Initialize chromosome matrix
4 while ∃t ∈ T : ∑

K
e=1Ce,t < PPool

flex (t) do
5 e← random({1, . . . ,K}) ; // Select random EMS
6 t← random(T) ; // Select random time

7 p← random(
[︂
0,PPool

flex (t)−∑
K
e=1Ce,t

]︂
∩
[︂r

Pmin
flex (t)

z

e
,
r

Pmax
flex (t)

z

e

]︂
);

8 p←min(max(p,Smax),PPool
flex (t)−∑

K
e=1Ce,t);

9 Ce,t ←Ce,t + p
10 end
11 Π0←Π0∪{C}
12 end
13 return Π0

The GA processes chromosomes in population sets Πp of size µ , where the index p ∈ N0
represents the generation number. The initial population Π0 for a positive flexibility request
is generated by Algorithm 4.3, which iteratively selects a random EMS e ∈ {1, . . . ,K} (ma-
trix row) and a random time slot t ∈ T (matrix column), and samples a random flexibility
portion from the feasible flexibility of the selected EMS e at time slot t from the interval
given in line 7. Thereby, it is ensured that not arbitrarily small portions are assigned by
limiting the minimum portion to size Smax. The result is added to the already scheduled
flexibility until the full flexibility request to the flexibility pool is served. The initial pop-
ulation for negative flexibility requests is constructed similarly. Note that this creates a
flexibility disaggregation with identical signs at all EMS because inverse flexibility contri-
bution from a single EMS would need compensation by the other EMSs. Furthermore, it
is worth mentioning that the resulting initial population is not uniformly distributed in the
solution space. Even though each EMS is selected with the same probability, an EMS with
higher flexibility range will more likely receive an overall higher contribution share.

Starting with the initial population Π0, subsequent populations Πp+1 are created by the
selection, modification, and insertion of new chromosomes using genetic operators as de-
scribed in Algorithm 4.4. Thereby, each population first updates the known Pareto-optimal
solution set ΓPareto in line 6 comparing the chromosomes by their fitness values, which en-
codes the multi-objective criteria. Afterward, the chromosomes are sorted by a diversity
operator in line 7 to avoid clustering of similar chromosomes. In line 8, the selection op-
erator selects µsel candidates from the population set, and together with newly generated
random chromosomes and chromosomes from the Pareto-optimal solution set, the next
population of size µ = µsel +µnew +µpareto is created. The crossover operator and the mu-
tation operator in line 10 modify the population to generate chromosome variations with
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Algorithm 4.4: GA to determine the Pareto-optimal solution set of a flexibility
request to a flexibility pool.

Input: Initial population Π0
Output: Pareto-optimal solution set ΓPareto

1 p← 0;
2 ΓPareto←{};
3 while stop criteria not met do
4 p← p+1;
5 Πp = Πp−1;
6 ΓPareto← update(ΓPareto,Πp);
7 Πp← diversify(Πp);
8 Πp← select(Πp)∪new_chromosomes()∪ random(ΓPareto);

9 Πc
p,Π

m
p ⊂Πp : Πc

p∩Πm
p = /0∧

⃓⃓
Πc

p

⃓⃓
=
⃓⃓
Πm

p

⃓⃓
=
|Πp|

2 ; // Equal subsets
10 Πp← crossover(Πc

p)∪mutate(Πm
p );

11 end
12 return ΓPareto

potentially better fitness. This procedure is repeated until the termination criteria are met,
e. g., maximum generation count or time limitation. In the end, the GA yields the Pareto-
optimal solution set of the multi-dimensional fitness function from which one chromosome
can be selected posteriorly. Compared to the classical GA, only one of the two operators
crossover and mutation are applied to each chromosome in every generation. This is be-
cause both operations can preserve partial fitness values from the old chromosome, which
helps to speed up the fitness calculation, as explained in the following sections. Chaining
both operations can lead to the loss of most cached fitness values and requires full fitness
re-evaluation.

4.4.2.1 Fitness Function

Chromosomes are compared by their fitness values, which are calculated by a fitness func-
tion that is maximized. The GA can handle non-linear, non-convex, and multi-dimensional
fitness functions by design. The objectives of each stakeholder are represented by one
dimension of the four-dimensional fitness function in Equation (4.52).

ffit : RK×|T|→ R4 : x→ ( f1(x), f2(x), f3(x), f4(x)) . (4.52)

These multi-dimensional fitness vectors are compared by Pareto-dominance ≻P [169],
where the comparison operator is defined in Equation (4.53) for chromosomes x,y∈RK×|T|.

ffit(x)≻P ffit(y)⇔∀ j : f j(x)≥ f j(y)∧∃k : fk(x)> fk(y) (4.53)

Resource Aggregator The resource aggregator maps flexibility requests to the EMSs
while aiming for the lowest cost and the highest flexibility delivery probability. Referring
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to Section 4.2.3, the cost of a flexibility request x is determined by γPool(x) and the deliv-
ery probability is given by ρPool(x). The fitness dimension of the resource aggregator is
expressed in Equation (4.54), where w1,w2 ≥ 0 allows for biasing.

f1 : RK×|T|→ R : x→−w1 · γPool(x)+w2 ·ρPool(x) (4.54)

Grid Operator The goal of the grid operator is to reduce grid losses due to resistive
heating in grid assets [3]. Therefore, reported grid profiles PG(t) at the grid connection
points of the EMSs are used to determine grid losses in Equation (4.55).

f2 : RK×|T|→ R : x→−∑
t∈T

Lflow

(︂
(JPG(t)Ke)e∈{1,...,K}

)︂
(4.55)

Since according to Assumption A12 required power grid data is available, Lflow : RK → R
calculates the grid losses at time t using the power flow equations and measures the grid loss
at the transformer. These grid losses are compared to a baseline without applied flexibility,
hence only the additional grid losses of the flexibility request are considered.

Resource Provider The resource providers want to maximize their achieved self-
consumption and energy autarky. Therefore, this fitness dimension measures the aggregated
degree of self-consumption and autarky that are achieved after scheduling the flexibility re-
quest. The individual self-consumption and autarky, defined in Equations (4.46) and (4.47),
are summed and linearized with weights w3,w4 ≥ 0 in Equation (4.56).

f3 : RK×|T|→ R : x→ w3 ·
K

∑
e=1

JQoE5Ke +w4 ·
K

∑
e=1

JQoE6Ke (4.56)

Service Fairness Provider The last fitness dimension focuses on service fairness among
EMSs. While f3 maximizes the linear sum of quality metrics of the EMS, it does not
consider how even the degree of self-consumption and autarky are distributed among the
EMSs. Therefore, the service fairness provider aims to achieve similar degrees of self-
consumption and autarky among EMSs. To not bias the fairness value with the achieved
quality metric, the Fairness Index F from Equation (2.3) is used. Since self-consumption
and autarky are limited in [0,1], the fairness index simplifies to F(S) = 1−2σ(S), where S
is the set of quality metrics of the different EMSs. The two fairness indices are linearized
with w5,w6 ≥ 0 in Equation (4.57).

f4 : RK×|T|→ R : x→ w5 ·F({JQoE5Ke}e=1,...,K)+w6 ·F({JQoE6Ke}e=1,...,K) (4.57)

Note that in some cases the fitness function of a chromosome cannot be calculated or is
invalid. This is the case when the MILP problem of the EMS does not contain any solution
(hence is not solvable) or the disaggregation schedule causes voltage violations during the
power flow analysis in Lflow (with voltage values outside the permitted range of 0.9 p.u. to
1.1 p.u.). These chromosomes are ignored and simply removed from the population set.
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Algorithm 4.5: Population fitness clearing.
Input: Population list Π of size µ

Output: Population Π with an updated fitness value
1 f min

fit ← (minc∈Π( f1(c)),minc∈Π( f2(c)),minc∈Π( f3(c)),minc∈Π( f4(c)));
2 Π← sorted(Π) ; // Sort population to descending fitness values
3 for i = 0, . . . ,µ−1 do
4 winners← 1;
5 for j = i+1, . . . ,µ−1 do
6 if dchrom(Π[i],Π[ j])< σclear then
7 if winners < κclear then
8 winners← winners+1;
9 else

10 ffit(Π[ j])← f min
fit ;

11 end
12 end
13 end
14 end
15 return Π

4.4.2.2 Genetic Operators

This section details the operators of the GA from Algorithm 4.4.

Diversity There is a chance that mutation and crossover operators produce many similar
offspring chromosomes, such that the whole population narrows down to a limited region
in the search space or optimizes towards a local optimum. Population clearing is used
to ensure diversity in the population set [161]. This method uses the Manhattan distance
between two chromosomes x and y, which is defined for fitness values in Equation (4.58)
and chromosome matrix representations in Equation (4.59).

dfit(x,y) =
4

∑
i=1
| fi(x)− fi(y)| (4.58)

dchrom(x,y) =
K

∑
e=1

∑
t∈T
|xe,t − ye,t | (4.59)

The goal is to identify clusters of chromosomes with very similar matrix representations
with a maximum distance of dchrom(x,y) ≤ σclear. The clearing procedure as defined
in [133] is detailed in Algorithm 4.5. In each cluster, κclear chromosomes with the highest
fitness values, called the winners, remain unchanged, while the fitness values of the other
chromosomes are reduced to the lowest value per dimension in the population. As a result,
the winners of a cluster will have a higher chance to be selected in the selection procedure,
and similarity clustering is reduced.
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Selection The selection operator is based on tournament selection, where a subset of
chromosomes Πsel

p ⊆ Πp with tournament size ks =
⃓⃓
Πsel

p

⃓⃓
is randomly chosen from the

current population and the best chromosome c of the subset is copied to the next genera-
tion. This process is repeated until µsel chromosomes are selected. In the case of Pareto-
equivalence, the chromosome with a higher linearized fitness value wins.

Pareto-optimal Solutions and Random Chromosomes Because the population size is
limited to µ , the known Pareto-optimal solution set is stored separately from the popula-
tion. To avoid overlooking chromosomes with high fitness, µpareto chromosomes from the
Pareto-optimal solution set are re-added to the population. This implements an elitist strat-
egy, where chromosomes with already high fitness may further improve via crossover and
mutation. Additionally, to avoid optimizing towards a local optimum, µnew random chro-
mosomes are generated similarly to the initial population and are added to the population.

Crossover The crossover operator takes two parent chromosomes x and y, and crosses
them at random locations to create one new chromosome z. Because all genes need to
fulfill the requirement from Equation (4.36), the new chromosome matrix z is created by
using column vectors either from x or y, which already satisfy this condition. The splitting-
point method is used, whereby the number of splitting points kc ≥ 0 is sampled from a
Poisson distribution with λc. The unique random splitting points {t1, . . . , tkc}, for which
∀i ∈ {1, . . . ,kc} : ti ∈ T ∧¬∃ j ̸= i : t j = ti, define which genes inherit from parent x and
which from y. The new chromosome z is created by copying column vectors from x until
the next splitting point is reached, followed by columns from y, and so on. In addition to
z, the crossover operator automatically creates the inverse chromosome z′ which takes the
column vectors from the opposite parent chromosomes. Note that the Manhattan distance
between the two parent chromosomes x and y is equivalent to the distance between the two
offspring chromosomes z and z′, which follows from the definition of the distance function
in Equation (4.59).

The newly created chromosome is a time-stripped mixture of the two parent chromosomes,
where partial results from the steady state power flow calculation in f2 can be re-used.
Therefore, it is guaranteed that the new chromosome will not violate any voltage limita-
tions, however, the EMSs may become infeasible.

Mutation The mutation operator takes one chromosome x and creates a variant z of that
chromosome. It exploits the fact that the total flexibility per gene (column vector) has to
remain constant, hence, only the flexibility distribution among the EMSs may change. For
each time slot t ∈ T, the mutation operator first samples a random number of mutations
km ≥ 0 to be applied to the corresponding gene from a Poisson distribution with λm. Sec-
ond, for each mutation two random unique EMS i, j ∈ {1, . . . ,K} : i ̸= j (matrix rows) are
selected. To increase the probability that the resulting chromosome is feasible from the
EMS perspective, the flexibility potential of both EMSs is evaluated. The range in Equa-
tion (4.60) defines the possible flexibility shift from EMS i to j, from which a random value
is chosen. In total, km ≥ 0 mutations are applied to each gene of chromosome x.
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It can be seen that mutation does not modify all EMSs, hence the remaining EMSs still have
the same cost, probability, self-consumption, and autarky, which can be cached.

Figure 4.3 shows the Poisson distribution of kc and km with different configurations of the
parameters λc and λm. With λc = λm = 2, this gives an approximate 13.5 % chance for
a chromosome to stay unmodified by the crossover operator and a 13.5|T|% chance for
the mutation operator. However, depending on the population, their fitness value may get
modified by the diversity operator, or the selection operator may drop the chromosome for
the next generation.

4.4.3 Discussion

The linear and the meta heuristic target similar objectives, however, the methods to reach
these objectives are fundamentally different. For example, minimization of flexibility dis-
aggregation cost is achieved by the disaggregation priority function pCOST and objective
function f1 with w1 = 1 and w2 = 0. A second example is the flexibility delivery prob-
ability which is optimized by the priority function pPOPT and objective function f1 with
w1 = 0 and w2 = 1. Both have in common that the EMSs are considered as black boxes,
which enables interoperability of different EMS formulations. The linear heuristic can only
optimize towards a single objective, which is further limited by the required properties of
the disaggregation priority function p(.). On the other hand, the meta heuristic is more
generalized and supports multiple objective functions with no property restrictions. Since
the linear heuristic schedules flexibility for a single time slot after another, it is more suit-
able for near real-time operation, where scheduled flexibility at past time slots cannot be
changed anymore and future flexibility requirements are not known yet. The meta heuristic
is better suited for day-ahead optimization, as it can explore the interaction of flexibility
disaggregation between multiple time slots.

114 CHAPTER 4 - Power Flexibility Service



To disaggregate a flexibility request PPool
flex (t) to K EMSs at a single time slot t, the linear

heuristic needs to calculate the priority value once for each EMS, which is assumed to be
constant in O(1). After assigning a flexibility portion to one EMS, only the priority value
of that single EMS must be updated, other priority values can be cached. The number of re-
quired update steps depends on the flexibility request PPool

flex (t) and the configured maximum
step size Smax and is therefore independent of the number of EMSs K in the flexibility pool.
The overall computational effort for multiple time slots T is estimated in Equation (4.61).

O

(︄
|T| ·

(︄
K +

⃓⃓⃓⃓
⃓PPool

flex (t)

Smax

⃓⃓⃓⃓
⃓
)︄)︄

(4.61)

Note that the accuracy of the algorithm to achieve the expectations defined by p(.) de-
pends on Smax and the shape of the disaggregation priority function. Smaller step sizes can
improve the accuracy, but also impact the computation time.

The meta heuristic processes a population set of µ chromosomes over several generations.
The initial population is created once at the beginning of the algorithm and schedules flexi-
bility portions to the EMSs, where for each portion the upper and lower flexibility limits of
one EMS are calculated in assumed O(1). The expected maximum computation time for µ

chromosomes is estimated in Equation (4.62).

O

(︄
µ · |T| ·

⃓⃓⃓⃓
⃓PPool

flex (t)

Smax

⃓⃓⃓⃓
⃓
)︄

(4.62)

Assuming that an upper limit of G generations is executed by the GA, the fitness value
of each chromosome must be evaluated O(µ ·G) times. In practice, the genetic operator
design allows the fitness function, which can be computationally intense, to be partially
re-evaluated and results from the unmodified part of the genes to be reused, which can
drastically improve the expected worst case execution time. During each generation, all
the genetic operators are executed once. Updating the Pareto-set requires in the worst-
case O(µ ·µ ·G) fitness value comparisons, since each generation out of G may potentially
yield µ Pareto-equivalent chromosomes, to which the current generation with size µ is
compared. Note that this is a very conservative complexity estimation as not every chro-
mosome will be part of the Pareto-front. The diversity operator must additionally compare
the chromosomes of the current population with each other in O(µ · µ). The selection
operator samples µsel tournaments with a maximum of ks = µ participants hence runs in
O(µ · µ), µnew chromosomes are created similar to the initial population as estimated in
Equation (4.62), and adding µpareto chromosomes from the Pareto-set is limited in O(µ).
The crossover operator performs a maximum of kc = |T| splitting points in O(µ · |T|) and
the mutation operator runs in O(µ · |T| · km) since for each chromosome and time slot a
maximum number of km mutations require to calculate the possible flexibility limits of two
MILPs. The overall complexity of the GA is summarized in Equation (4.63). As can be
seen, the most impacting parameter is the population size µ , followed by the generation
count G. The GA is independent of the number of EMSs K of the flexibility pool. Com-
paring Equations (4.61) and (4.63), it can be seen that the GA comes with an at minimum
µ ·G higher computational complexity, which is driven by the number of chromosomes per
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generation and the number of processed generations.
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⃓PPool

flex (t)
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⃓
)︄)︄)︄)︄

(4.63)

Finally, it is possible to combine both heuristics, such that the flexibility schedules from
the linear heuristic are used to generate a more advanced initial population set of the GA.
A maximum of 4 · |T|! possible variations of the same flexibility request can be created
using the four different disaggregation priority functions EQUAL, PROP, COST, and POPT,
and different scheduling order of the time slots in line 1 of Algorithm 4.2. Finally, the
initial population of the GA can be created from a mixture of chromosomes from the linear
heuristic with a set of random chromosomes for exploration possibilities.

4.5 Evaluation

This section first describes the hardware setup and scenario description for the evaluation,
including the data and forecast models for the EMSs, as well as the underlying low-voltage
power distribution grid. In the second part, the performance of the MILP formulation is
evaluated before the effectiveness of the different GA operators is demonstrated. Further-
more, the optimal hyper-parameters of the GA are determined and fixed by a one-at-a-time
sensitivity analysis. The linear heuristics as well as the GA is applied to the use case sce-
nario and evaluated with regard to QoS, QoE, and fairness, as well as their impact on the
power system. Three additional realistic use case scenarios for flexibility disaggregation,
for which the impact of the different flexibility disaggregation policies is analyzed, extend
the analysis.

4.5.1 Setup

The MILP problem is modeled using the linear programming library PuLP17 in python18

and is solved by the commercial solver gurobi19. The execution time highly depends on the
MILP implementation and the used solver, especially because both the linear heuristic and
the meta heuristic require iterative optimal schedules of all EMSs of the flexibility pool.
The EMS and the GA simulations are executed on a single server setup using 32 threads
on an Intel Xeon processor, which allows exploiting the parallelism of the GA that resulted
in a speedup of approximately 19.8 between a single thread and 32-thread execution. This
large gap is due to the required synchronization during the GA execution, since only the
CPU-intense tasks, e. g., creation of new random chromosomes, mutation operator, and
fitness evaluation, are executed in parallel. Furthermore, a fitness value cache stores partial
results of the fitness function, e. g., power flow solutions of individual time slots and optimal
schedules of the EMS, which results in an additional speedup of approximately 1.2. In total,

17https://pypi.org/project/PuLP (version 2.6.0)
18https://www.python.org (version 3.9.10)
19https://www.gurobi.com (version 9.5.2)
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parallelization and fitness caching achieve a speedup of 23.76 on the use case scenario
described in the following section.

4.5.1.1 Energy Management System and Data

To perform home EMS optimization, forecast models for the PV generation PPV(t) and the
household load PHH(t) are required. In this study, a Long-Short Term Memory (LSTM)-
based PV forecast model and a similar-day household load forecast model are used, which
are presented by co-authors in [37]. However, the forecast models are interchangeable and
the power flexibility provision works with any model that can provide the forecast error
distribution function or empirical error data as stated in Assumption A16. The LSTM fore-
cast model is trained on 5 different real PV systems for the next 24 h using only historical
weather data, similar to [2, 99, 110, 145]. A similar-day model is applied for household
load forecast, which simply yields the average load profile of similar weekdays over the
last four weeks. Household load profiles from 10 different real households are used in this
study. Both PV and load profiles are recorded by OpenEMS [54] at real household instal-
lations located in Central Europe using the anonymized data that is available on the Open
Energy Platform [98]. More details on the forecasting models can be found in [37].

The EV driving patterns are the same as described in Section 3.5.1.1. The EV availability
is determined by the arrival and departure times as given in Equation (4.64).

αi(t) =

{︄
1 if tarr ≤ t < tdep

0 else
(4.64)

The driving distance converts to required energy Ereq
EV,i with an assumed energy consumption

of 17 kWh per 100 km and a realistic average battery storage capacity of Emax
EV,i = 40kWh,

similar to Chapter 3. All charging processes start with an initial energy level of 10 %. The
charging power of the EV is limited to values defined by IEC 61851-1 with Pmin

EV,i = 4.3kW
and Pmax

EV,i = 11kW and a charging efficiency of µEV,i = 0.9.

For each EMS, the upper and lower grid limits Pmin
G (t) and Pmax

G (t) are fixed to ±20 kW,
which represents the fuse limit at the grid connection point. Since nowadays energy tariffs
are most often still constant for private customers in Germany, the energy cost cbuy(t) is
assumed constant.20 Nevertheless, the MILP model works with time-of-use prices as well.
A typically sized ESS21 is specified for each EMS with Pmax

ESS = 9kW, Emax
ESS = 12kWh,

µESS = 0.9, and an initial energy level of 10 %. Furthermore, with the same reasoning as in
Section 3.5.1.1, between 0 and 2 EV charging processes from the aforementioned charging
patterns are randomly assigned to each EMS. If not noted otherwise, all simulations are
carried out with one-hour resolution, hence T = 24, and ∆t = 1. In the case of quarter-
hourly simulation, the parameters are set to T = 96 and ∆t = 0.25.

20The actual value does not matter in the linear objective function in Equation (4.16)
21The recorded households in [98] use the FENECON Pro 9-12 storage system with a 12 kWh Lithium iron

phosphate (LiFePO4) battery pack and 9 kW peak power. (https://fenecon.de/en/fenecon-pro-9-12)
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Figure 4.4: Use case scenario for power flexibility scheduling to a flexibility pool. The
dotted line shows the original aggregated grid connection profile of 55 EMS and the solid
line shows the grid profile after peak shaving of reverse power flow between 10 h to 15 h.

4.5.1.2 Power Grid and Simulation Scenario

The use case scenario builds on the IEEE 906 low-voltage test feeder, which is depicted in
Figure 3.7 and detailed in Section 3.5.1.2. This low-voltage grid is simulated by the power
flow solver pandapower22. Instead of the 55 static household load profiles as provided by
the benchmark grid, one EMS is connected to each of the household grid connection points
with assumed phase-balanced connection.

During the day, high PV generation causes reverse power flow from the low-voltage grid
to the upper-level power system. To reduce this reverse power flow, the DSO may be
interested to schedule flexibility to the flexibility pool that includes all the 55 EMSs. The
investigated use case scenario aims to perform peak shaving of the reverse power flow to
approximately −150 kW, as depicted in Figure 3.15. The required flexibility request is
defined by the time horizon T = {10,11,12,13,14,15} and the flexibility request given in
Equation (4.65), which schedules a total energy demand of more than 106 kWh, which is
approximately 16 % of the aggregated ESS capacity of the EMSs.

PPool
flex = (−1677,−24835,−39392,−24022,−14137,−2253) (4.65)

22https://www.pandapower.org (version 2.10.1)
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Figure 4.5: Computation time and feasibility ratio of 350 EMSs within 2 min. Note that
the time axis is on logarithmic scale.

4.5.2 Analysis

This section first evaluates the performance of the MILP formulation on the given hard-
ware and validates the efficiency of the genetic operators, including a detailed analysis of
the hyper-parameters of the GA. Afterward, the linear heuristic and the meta heuristic are
compared using the aforementioned use case scenario. The resulting disaggregation sched-
ules of both methods are analyzed on their achieved service quality metrics and fairness
among the EMSs as defined in Section 4.3.

The fitness function weights are set to ∀i = 1, . . . ,6: wi = 0.5 by default. To better com-
pare the fitness of chromosomes, each dimension of the fitness value is normalized to
the minimum and maximum fitness dimension values of 1000 randomly created chromo-
somes using Algorithm 4.3. Values of f1 are within [−6.087,−1.658], f2 ∈ [62279,62625],
f3 ∈ [37.838,38.704], and f4 ∈ [0.568,0.598]. Consequently, fitness dimensions with neg-
ative values evaluate worse than 1000 random chromosomes, and fitness values above 1.0
evaluate better. In the following, fx refers to the normalized fitness value of dimension x.
Finally, to directly compare chromosomes with each other, the multi-dimensional normal-
ized fitness vector ( f1, f2, f3, f4) is linearized with equal weights of 0.25 per dimension to
flin = 0.25 f1 +0.25 f2 +0.25 f3 +0.25 f4.

4.5.2.1 Performance of the Energy Management System

To evaluate the computation time of the MILP, 350 different realistic EMS scenarios are
sampled from 10 household profiles, 5 PV profiles, and 7 different summer days. With
quarter-hourly time resolution, the number of decision variables per EMS varies with the
number of assigned EVs. The mean number of decision variables is 1218 (min 584, max
2116), of which 19.8 % (min 16.4 %, max 22.7 %) are binary variables, and the mean num-
ber of constraints is 1887 (min 1249, max 2789). As can be seen in Figure 4.5, most EMS
scenarios can be solved within the time limitation of 2 min using only a single thread of
the multi-core CPU. Solving objective function O1 for cost estimation is on average drasti-
cally faster than solving all hierarchical objectives, which in turn positively influences the
computation time of the COST flexibility disaggregation.

The performance of the MILP can be quantified by the degree of self-consumption and
energy autarky as defined by the quality metrics QoE5 and QoE6 in Equations (4.46)
and (4.47). The box plots in Figure 4.6 show the distribution of the metric values, where the
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Figure 4.6: Degree of self-consumption and autarky of 350 EMS scenarios.

MILP can not always reach the maximum degree of self-consumption and autarky for all
EMS, because in many EMS scenarios, the PV generation is smaller than the total consump-
tion and highly misaligned with the consumption profile. In [37], it was demonstrated that
the average achieved degree of self-consumption and autarky using specific forecast models
(LSTM for PV generation and similar day forecast for household load) is lower compared
to assumed perfect forecasts. Consequently, forecast inaccuracies impact the optimality of
the planned profiles to a non-negligible degree. This should be kept in mind during the
analysis of flexibility provisioning where scheduled power flexibility always needs to be
provided.

The EMS constraints in Equations (4.14) and (4.15) prevent the ESS to charge from the
grid or to discharge to the grid. These constraints are required to prohibit the EMS to use
its ESS to participate in the energy market and cause unpredictable situations in the power
distribution grid. However, these limitations drastically impact the possible flexibility that
can be scheduled to an EMS. As can be seen in Figure 4.7, the flexibility range of a flex-
ibility pool consisting of 150 EMSs is limited on average to only 30.37 % of the possible
flexibility. In addition, EV charging provides mostly negative flexibility at night, and PV
generation provides most of the positive flexibility during the day. As a result, these EMS
constraints should only be used for local optimization and be neglected when it comes to
flexibility scheduling to make maximum use of the local ESSs. Therefore, in the following,
the EMS uses a MILP formulation without the constraints in Equations (4.14) and (4.15).

4.5.2.2 Validation of the Genetic Operators

For a GA with a multi-dimensional fitness function, not only the linearized fitness value
of the best chromosome counts but also the diversity within the Pareto-set. On the one
hand, high fitness diversity ensures that the Pareto-front of the optimization problem is well
explored. On the other hand, a high chromosome diversity of a population shows that the
search space of all possible chromosomes is traversed well. The fitness and chromosome
diversity of a set of chromosomes Π are defined based on the mean Manhattan distance
as defined in Equations (4.58) and (4.59) and are calculated according to Equations (4.66)
and (4.67).

divfit(Π) =
1

2 |Π| ∑
x∈Π

∑
y∈Π

dfit(x,y) (4.66)

divchrom(Π) =
1

2 |Π| ∑
x∈Π

∑
y∈Π

dchrom(x,y) (4.67)
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Figure 4.7: Optimal profiles of a flexibility pool with 150 EMSs [37].

The chromosomes of a population with small chromosome diversity are located near each
other, and the GA may miss regions of the search space. On the contrary, large chromo-
some diversity in a population corresponds to chromosomes being widespread in the search
space, which in the case of too large diversity may not result in an overall optimal solution.
The fitness diversity of the Pareto-set quantifies the exploration of the multi-objective so-
lution space, where a Pareto-set with larger fitness diversity contains a more widespread
Pareto-front, from which one chromosome is selected posteriorly.

Genetic Operators First, the performance of creating new random chromosomes for the
use case scenario is evaluated. The creation of 1000 random chromosomes using Algo-
rithm 4.3 takes on average 17.56 s per chromosome on a single thread of the hardware
setup. The algorithm yields a very small failure rate of only 0.4 % of invalid chromosomes
and the resulting population set contains 66 dominating chromosomes as defined in Equa-
tion (4.53). According to Table 4.2, the computation time is larger compared to the other ge-
netic operators because iterative calculations of the MILP variable boundaries are required.
Nevertheless, new chromosomes are mainly created once before entering the generations’
loop of the GA and, therefore, the time required for generating new chromosomes has only
a small effect on the overall execution time of the GA. The chromosome diversity of the ran-
dom population Πrand shows how well the chromosomes are distributed in the search space.
Assuming that only equally signed flexibility is scheduled to the EMSs, like it is done in
Algorithm 4.3, the maximum possible Manhattan distance between two chromosomes is
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Table 4.2: Genetic operator evaluation including the quality of the offspring chromosomes
and the resulting Pareto-set of 1000 initial chromosomes.

Operator Failure rate Parent p Population Time
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Random 0.4 - - - 66 0.77 164 288 17.56
Crossover (λc = 1) 53.0 0.8 45.7 0.5 38 0.87 164 332 0.01
Crossover (λc = 2) 76.6 0.8 22.0 0.6 31 0.69 164 065 0.01
Crossover (λc = 3) 90.0 0.4 9.3 0.3 16 0.79 163 831 0.01
Mutate (λm = 1) 5.0 13.0 77.7 4.3 80 0.87 184 856 6.19
Mutate (λm = 2) 19.1 11.6 68.8 0.5 68 0.99 203 396 7.51
Mutate (λm = 3) 34.4 9.5 56.1 0.0 46 1.24 221 227 9.58

limited by the flexibility request vector (PPool
flex (t))t∈T , and is given by divmax

chrom = 212.632.
The chromosome diversity divchrom(Πrand) covers 77 % of divmax

chrom, which means that the
search space is well explored and the proposed creation of random chromosomes is suitable
for exploration of the given search space.

To demonstrate that the crossover and the mutation operator create new feasible and im-
proved versions of their parent chromosomes, an empirical analysis is conducted that ap-
plies each of the operators to the same population set of 1000 random chromosomes. Ac-
cording to Table 4.2, the crossover operator configured with λc = 1 produces 47 % feasible
chromosomes. The relatively high infeasible rate, which even increases with higher values
for λc, is explained by the simplistic crossover procedure that does not utilize EMS-specific
logic. Independent of λc, most of the feasible offspring chromosomes are Pareto-equivalent
to their parents, which shows that the crossover operator aims for exploitation [30]. Since
the crossover operator only combines parts of the parent chromosomes, the Manhattan dis-
tance of the offspring chromosomes is identical to the distance between its parents. Conse-
quently, the chromosome diversity of the resulting population divchrom(Π) stays nearly the
same compared to the random population, with only small variations due to the infeasible
chromosomes.

The mutation operator configured with λm = 1 creates feasible chromosomes with 95.0 %
probability, which is due to the definition of the mutation procedure that only shifts flexibil-
ity between EMSs within their flexibility limits. However, since only the upper and lower
boundaries of the flexibility potential are considered, EVs that require a minimum charg-
ing rate may still cause the chromosome to become infeasible, especially when multiple
mutations are applied at once with λm = 2 and λm = 3. With λm = 1, around 4.3 % of the
feasible offspring yields worse fitness values, while 13.0 % dominate their parents. The
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Figure 4.8: Impact of population clearing using the clearing operator. The line shows the
mean linearized fitness value and the shaded area represents the 95 % confidence interval.

size of the Pareto-front is slightly larger with better fitness diversity compared to the ran-
dom population. The mutation operator creates diverse chromosomes (exploration), which
is underlined by the high probability of Pareto-dominating and Pareto-equivalent offspring
and the increased chromosome diversity of the new population, especially with higher λm

values. Note that with λm = 3, the chromosome diversity even overshoots divmax
chrom, since

the mutation operator also produces many chromosomes with opposite signs of flexibility
at the EMSs.

The following experiment highlights the impact of the diversity operator on the population
throughout the generations of the GA execution. Therefore, the GA is executed six times
with random initial populations of size µ = 50 and a time limit of 2 h. Figure 4.8 shows
the mean linearized fitness value of the best chromosome that was found until the given
generation on the x-axis and its 95 % confidence interval. It can be seen, that fitness clearing
with the default parameters from Table 4.3 helps to slightly improve the performance of the
GA. Note that this graph is cut at the minimum generation count of the random executions,
hence depicts the worst-case performance. However, the mean linearized fitness value of
the last generation of each GA execution shows similar results, where without clearing
flin = 0.850(±0.028) and with clearing flin = 0.861(±0.030) is achieved.

Finally, the proposed GA approach, where crossover and mutation are applied to only half
of the population, is compared to the classical GA, where the crossover operator is first
applied to the entire generation before invoking the mutation operator. Figure 4.9 shows
the mean fitness development and its 95 % confidence interval of six GA runs with µ = 50
and a time limit of 1 h. As can be seen, the minimum number of processed populations
is approximately 17.6 % larger with the modified approach compared to the classical GA.
Nevertheless, each operator is applied less often, but in total, a larger number of chromo-
somes is processed during the GA execution. Second, the achieved quality of the chromo-
somes improves drastically compared to the classical GA, which can be explained by the
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Figure 4.9: Classic GA compared to the alternating operator approach comparing six GA
runs over 1 h.

more fine granular search space traversal, since by design only one of the two operators is
applied at once. In the classical GA, the probability to apply only one of the two operators
is much lower. Note that Figure 4.9 again shows only the minimum generation count from
the six simulation runs. The final linearized fitness value is given by 0.729(±0.016) and
0.811(±0.023), respectively.

Impact of Randomness and Pareto-set Exploration The chromosomes should cover
a large region of the fitness function optima to allow a posteriori selection of the multi-
objective criteria. The scatter plots in Figure 4.10 compare the fitness dimensions from
the Pareto-optimal set of six random populations with size µ = 1000 to assess the fitness
distribution for randomly created chromosomes. As can be seen, all six random Pareto
sets cover mostly the same normalized fitness regions, which indicates that their fitness
values are well distributed. With multi-dimensional fitness functions, a higher fitness value
in one dimension typically tends to decrease the value of another dimension [39], which
can be seen in the majority of the scatter plots. However, this does not hold for the fitness
dimensions f1 and f3, where the fitness values of the random chromosomes correlate. That
is reasonable, because with the MILP formulation as described in Section 4.2 minimizing
the cost of flexibility provision is highly related to the level of autarky and self-consumption
according to the cost function in Equation (4.16). Nevertheless, both fitness dimensions are
treated separately since in theory, the delivery probability (part of f1) depends only on the
flexibility limits and the forecast error distributions. Results for random chromosomes of
population size µ = 100 are similarly well distributed and are provided in Figure A.4.

In addition to the random chromosome creation, also the crossover and the mutation op-
erator rely on random processes. Figure 4.11 shows a 24 h simulation of the GA using
six random initial populations of size µ = 50. The dotted lines represent the mean fitness
value of the best chromosome found after each generation with a shaded 95 % confidence
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Figure 4.10: Comparison of the fitness dimensions of ffit from the Pareto-optimal solution
set of six random population sets of size 1000. Gray-shaded subplots show only the Pareto-
dominant chromosomes considering the two dimensions compared.
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Figure 4.11: Development of the linearized chromosome fitness of six random GA runs
over 24 h compared with purely random chromosome sampling in each generation.

interval, once for the GA execution and once for only sampling new random chromosomes
in each generation. The fitness value of the GA gradually improves over time but does
not converge to an optimum within 24 h. However, the GA outperforms the purely random
sampling strategy, which is limited to unidirectional flexibility disaggregation following
Algorithm 4.3. Since the 95 % confidence interval of the best chromosome after each gen-
eration is very narrow, it can be concluded that the randomness introduced by the genetic
operators does not impact the performance of the GA.

Finally, Figure 4.12 illustrates the resulting Pareto-optimal solution sets of the six GA runs
that cover most of the optimal regions between any two fitness dimensions in the majority
of cases, which offers diverse solutions for a posteriori selection. The fitness dimensions f1
and f3 have not improved much over 1000 random chromosomes as shown in Figure 4.10,
which is because shifting flexibility during surplus PV generation is cost-neutral most of
the time and has only a small impact on self-consumption and autarky. Furthermore, an
increase in delivery probability, self-consumption, or autarky at one EMS typically causes
a decrease at another EMS, which finally yield very similar aggregated values. Whereas,
fitness values of f2 and f4 have improved by factors of 3.5 and 1.5, respectively. This
improvement comes from a better allocation of the flexibility request in the power grid to
reduce grid losses and a more fair disaggregation to the EMSs of the flexibility pool. Note
that this improvement comes with a decrease in fitness in other dimensions. Overall, the
GA can move the Pareto-front to better results in all fitness dimensions.

Genetic Algorithm Hyper-Parameters As described in Section 4.4.2, the GA has plenty
of parameters for fine-tuning the algorithm. Testing all combinations of the different pa-
rameter configurations is not possible in a reasonable time. Therefore, a one-at-a-time
sensitivity analysis is performed, where only one parameter is altered while the others stay
with their default values as marked bold in Table 4.3.
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Figure 4.12: Comparison of the fitness dimensions of ffit from the Pareto-optimal solution
set after six 24 h GA executions with µ = 50. Gray-shaded subplots show only the Pareto-
dominant chromosomes considering the two dimensions compared.
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Table 4.3: Hyper-parameter selection for the one-at-a-time analysis, where bold parame-
ters show the default configuration. The default parameters are determined by a first guess
and multiple one-at-a-time sensitivity analyses where in each step the most influential pa-
rameter is fixed to its best configuration in the order of this table.

Hyper-parameter Symbol Values

Time limit 60 min
Population capacity µ 10, 50, 100, 500 (µnew = 0.1µ , µpareto = 0.1µ)

Mutation Poisson λm 1, 2, 3
Crossover Poisson λc 1, 2, 3

Clearing cluster size κclear 5 %,10 %,15 %,20 % of µ

Clearing distance σclear 0.5 %, 1 %, 3 %, 5 % of divmax
chrom

Tournament size ks 5, 10, 15

Table 4.4: Impact of population size on the GA performance, comparing the mean lin-
earized fitness values of ten random 1 h GA executions. The values in brackets show the
95 % confidence interval and ↑ is the improvement rate compared to the initial population.

µ # Gen ∑ chrom Initial fitness Final fitness ↑ [%] Worst fitness

10 52.6 526 0.688 (± 0.016) 0.718 (± 0.020) 4.4 0.666
50 29.4 1470 0.729 (± 0.019) 0.843 (± 0.023) 15.6 0.790

100 17.1 1710 0.753 (± 0.021) 0.817 (± 0.017) 8.5 0.771
500 3.3 1650 0.792 (± 0.012) 0.794 (± 0.011) 0.3 0.779

The population capacity µ influences not only the number of chromosomes per genera-
tion but also the computational cost of each generation as determined in Equation (4.63).
Together with a time limit, this leads to a trade-off between population capacity µ and
generation count G. This relation holds pretty well in Table 4.4, where the number of
processed chromosomes is nearly equal for different population sizes, and doubling the
population capacity µ nearly halves the number of generations processed within the time
limit of 1 h. There is only one exception for the very small population size of µ = 10 where
not all threads are fully utilized. With a larger population capacity µ , the best linearized
fitness value of the initial population is higher. However, since fewer generations are pro-
cessed on average, the finally obtained linearized fitness value is worse compared to lower
population capacities, where multiple crossover and mutation operations generate better
chromosomes. This experiment shows that a population capacity of µ = 50 is reasonable
for the use case scenario on the hardware setup described in Section 4.5.1.

Setting λc and λm to 1 would keep chromosomes unaltered with a probability of 37.5%+
37.5|T|%. On the other side, parameter values of 3 or higher cause multiple modifications
at once. This produces larger steps between the old and the new chromosome but also
leads to a higher chance of infeasible chromosomes as shown in Table 4.2. Small mutation
λm equal to 1 and 2 perform similarly well, however increasing λm to 3 produces a 12.4 %
lower linear fitness value after 1 h of GA execution. Since λm = 2 yields better chromosome
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and fitness diversity according to Table 4.2, the default decision of λm = 2 looks reasonable
for the use case scenario. A one-hour GA execution with λc = 2 produces a 5.3 % better
fitness value than with λc = 3 and an even 11.3 % better value than with λc = 1.

Population clearing is configured by the clearing distance σclear and the cluster size κclear,
whereby σclear depends on the flexibility request, more precisely on the maximum Man-
hattan distance divmax

chrom between two chromosomes, and κclear depends on the population
size µ . Large σclear will group more chromosomes to the same cluster, from which the best
κclear will keep their fitness value. Experiments show that the parametrization of κclear has
a higher impact on the linearized fitness value with variations in the range of 11.1 % and
a peak at κclear = 0.1, whereas σclear shows a slightly smaller impact of only 8.5 % with a
peak at σclear = 0.01. Finally, the tournament size shows fitness variations of only 1.5 %
with the best values for ks = 5.

4.5.2.3 Performance of Power Flexibility Provision

To demonstrate the performance of the linear heuristic for iterative scheduling, the proposed
disaggregation policies are compared by analyzing a flexibility pool consisting of 150 EMS.
Thereby, flexibility with different power levels is scheduled starting from time 10 until the
flexibility pool cannot provide the required power flexibility anymore. Figure 4.13 shows
the cost and probability of the scheduled flexibility for each policy. The cost develops
quite similarly for all policies except for COST, which has a lower total cost for small
power flexibility at the beginning. Bigger differences can be seen in the probability of
flexibility delivery, where POPT outperforms EQUAL and COST. Only the PROP policy
achieves comparable results because the disaggregation vector is very similar to POPT due
to the similarity of the CDF curves. Consequently, cost-optimal disaggregation, as widely
proposed in the literature, is not necessarily the best choice when a high delivery probability
from distributed EMSs is desired.

Next, the proposed GA is compared with the linear heuristic using the disaggregation policy
COST. Therefore, the fitness function is configured to the same convex cost-only objective
by setting w1 = 1 and ∀i = 2, . . . ,6: wi = 0, such that ffit = −γPool(x). Despite the fact of
this much simpler fitness function, the GA cannot compete with the linear heuristic even
with a 12 h run, as shown in Figure 4.14. The linear heuristic creates a flexibility sched-
ule with a non-normalized fitness value of −0.233, whereas the best solution found by
the GA evaluates to −1.613, gradually improving from values around −4 of the random
initial population. On the other hand, when initializing the GA with known good solu-
tions coming from the linear heuristic, the best chromosome improves after more than 320
generations to a slightly better value of −0.206. This can be explained by the mutation
operator which shifts continuous flexibility between EMSs, while the linear heuristic only
allocates multiples of Smax. The two main observations are: First, the linear heuristic can
find a nearly optimal solution and, second, the proposed meta heuristics cannot compete
with the specialized linear heuristic in terms of performance and efficiency when problem-
specific knowledge can be utilized. However, the GA has its main strength to solve multiple
objectives and can generate the Pareto-set of the problem.
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(c) COST.
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(d) POPT.

Figure 4.13: Aggregated cost (left, blue) and probability (right, red) of energy flexibility
of a pool consisting of 150 EMS with Smax = 1kW [37]. Note that cost graphs use log scale
in the color map.
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Figure 4.14: Best cost-only fitness compared to the problem-specific linear heuristic.

The resulting disaggregation schedule of the linear heuristic can be mapped to the chromo-
some representation on which the fitness values can be evaluated. Figure 4.15 shows the
Pareto-front of a 12 h execution of the GA together with the results from the four disaggre-
gation policies of the linear heuristic. It can be seen that the GA tends to optimize towards
the objectives of fitness functions f2 and f4, which outperform the linear heuristic. On the
other hand, some linear heuristic policies can find better solutions concerning f1 and f3,
which both are directly or indirectly part of their priority functions.

Figure 4.16 summarizes the absolute scheduled energy flexibility for each of the four dis-
aggregation policies of the linear heuristic and the chromosomes from the Pareto-front with
the best linearized and the best fitness value per dimension. As can be seen, the absolute
scheduled energy flexibility differs quite a lot. On the one hand, the rebound effect of flex-
ibility requires additional flexibility to be scheduled to the flexibility pool as explained in
Section 4.4.1. On the other hand, additional flexibility may come with no cost or can be
utilized to improve the optimization objective, which for example is the case for optimizing
power grid losses by fitness dimension f2. It is worth mentioning that only the best chro-
mosome for fitness dimension f3 schedules solely negative flexibility requests to the EMSs
with no additional flexibility requirement. This fitness function maximizes the degree of
self-consumption and autarky, which both are reduced by a flexibility rebound that must be
compensated by other EMSs.

4.5.2.4 Quality of Service/Experience and Fairness

The obtained metric values for the quality of service and experience of the different dis-
aggregation policies and the GA are analyzed in this section. Figure 4.17 shows box plots
over 55 EMSs, where the mean metric values are indicated by black circles. Below the box
plots, the fairness index F is depicted for each metric and policy, where L =−3090.91 and
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Figure 4.16: Absolute schedule flexibility to the flexibility pool, which differs between the
disaggregation policies and optimization objectives.
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H = 0 for QoS6. Note that since QoS7 and QoS8 yield only one value for the flexibility
pool, no fairness index can be computed.

The QoS5 metric measures the relative participation of an EMS to the flexibility request.
By definition, the mean QoS5 value among the method must be equal, since the number
of participating EMSs is constant. However, the individual participation ratio slightly dif-
fers among the EMSs, where the policy EQUAL achieves the fairest participation rates
by design. Since COST iteratively schedules flexibility to the EMS with the lowest cost,
many EMS receive at least a minimum, often nearly equal flexibility participation share as
well. All the other disaggregation schedules suffer from outliers where up to 30 % of the
flexibility request is delivered by one single EMS.

The metric QoS6 measures the deviation from the initial optimal schedule without schedul-
ing a flexibility request. This is best achieved by the COST policy and the GA with f1
and f3 since all three minimize directly or indirectly the flexibility cost, which is defined
based on the highest priority objective function O1 in Equation 4.29. Again, the EQUAL
policy performs sufficiently well since all EMSs participate in the delivery of the flexibility
request with a small share, which typically comes with only a small deviation from the op-
timal grid profile. Visually, most quality metrics of the EMSs with GA ( f3) are very close to
each other, however many outliers with drastic changes of lower priority objectives cause
the fairness index to drop.

There is only a single value for the two metrics QoS7 and QoS8, which measure the qual-
ity of the flexibility resource aggregator. As can be expected, COST yields the smallest
flexibility cost and therefore receives the best QoS7 metric score, followed by EQUAL and
PROP which distribute the flexibility request to all EMSs. This results in a usually small
total cost since a small flexibility request can be provided by any EMS with usually very
small or no cost at all. Similar to Figure 4.14, the GA with f1 receives a slightly lower qual-
ity score than COST but outperforms the chromosomes that are chosen for the other fitness
dimensions. Only GA ( f3) benefits from scheduling the minimum amount of flexibility and
reaches a comparable metric value.

As can be expected, POPT achieves the best quality score for the mean delivery probability
measured by QoS8. The PROP policy reaches a high metric score as well, since the flexibil-
ity is scheduled proportional to the flexibility limits of the EMSs, and the error probabilities
of the different EMSs are similar to each other. From the chromosomes of the GA, again
fitness dimensions f1 and f3 perform better since f1 aims to maximize the delivery prob-
ability together with the flexibility cost and f3 schedules no additional flexibility, which
keeps a larger safety margin towards the flexibility limits of all EMSs.

With QoE4, the ratio of flexibility participation is measured against the flexibility limits of
the EMSs. As can be expected, the flexibility schedules that utilize additional flexibility
achieve a larger flexibility utilization at the EMSs. This is the case for GA (lin), GA ( f2),
and GA ( f4). On the other side, GA ( f1), GA ( f3), and POPT, with relatively small or no
additional flexibility yield much lower utilization values, but reach better fairness indices.

The resulting degree of self-consumption and autarky, measured by QoE5 and QoE6, do
not differ much between the disaggregation policies. When comparing the box plots of
self-consumption (QoE5) with Figure 4.6, it can be seen that the mean value drops by
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Figure 4.17: QoS and QoE metrics of the different disaggregation policies for 55 EMSs.
The box plots show the resulting distribution among the EMSs and the circle denotes the
mean value. Below the box plots, the achieved fairness index F is given. Note that for
QoS6, the box blot uses a logarithmic scale to better capture the outliers.
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Table 4.5: Impact of flexibility disaggregation on the power grid.

Disaggregation Cost Mean probability Min Max Grid Losses
mechanism (QoS7) (QoS8) [%] [V] [V] [%]

EQUAL −2.13 84.97 229.95 234.66 4.28
PROP −3.73 94.53 229.95 234.72 4.06
COST −0.70 84.38 229.94 234.81 3.99
POPT −10.11 97.90 229.96 234.69 3.96

GA (lin) −6.63 82.69 229.89 235.13 1.16
GA ( f1) −3.95 92.01 229.96 234.65 4.28
GA ( f2) −12.35 84.11 229.88 235.13 0.89
GA ( f3) −4.93 92.08 229.96 234.60 4.39
GA ( f4) −15.06 85.36 229.90 235.12 1.63

Baseline - - 229.90 234.99 0.00

approximately 9 % points compared to the 350 EMSs without scheduled flexibility. Never-
theless, the statistical range of the values is nearly similar. The degree of autarky (QoE6)
does not show any significant differences as well. It can be concluded that, first, schedul-
ing flexibility in the investigated use case scenario does only slightly impact the degree
of self-consumption and autarky and, second, that all different disaggregation schedules
yield a very similar metric score distribution among the EMSs in the investigated use case
scenario.

From the different disaggregation policies and GA fitness dimensions, PROP is among the
best disaggregation schedules with both a high mean metric score and fairness index in
most of the quality of service and experience metrics on the given use case scenario.

4.5.2.5 Impact on the Low-Voltage Power Grid

The DSO cares about the voltage levels in the power grid and the overall grid losses of the
flexibility request, which the GA already considers by minimizing the grid losses in fitness
dimension f2 and by dropping chromosomes that produce invalid voltage values. The nine
different schedules from the analysis above are applied to the 55 EMSs located in the sim-
ulated low-voltage power grid, where the resulting grid losses and voltage levels are listed
in Table 4.5. The minimum voltage level at any bus in the low-voltage power grid is in a
reasonable range and only differs by less than 0.06 V, which can be neglected. From the
given PV peak shaving scenario, it can be expected that the maximum voltage level is re-
duced since the PV injection at the distributed EMSs is lowered after flexibility scheduling.
Thus, most voltage values improve by around 0.2 V to 0.4 V, however, this is not the case
for all disaggregation schedules. The three GA schedules GA (lin), GA ( f2), and GA ( f4)
shift a high amount of additional flexibility between the EMSs, which even increases the
maximum measured voltage level by approximately 0.12 V. This drastically impacts the
grid losses of the flexibility request that drop from around 4 % of the scheduled flexibility
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to values below 1.6 %, where the best value of 0.89 % is achieved by GA ( f2). Conse-
quently, different flexibility schedules do not have a major impact on the voltage levels, but
grid losses can be reduced by shifting flexibility between the EMSs. This however comes
with additional flexibility cost (QoS7) and finally leads to a trade-off between avoiding grid
losses and flexibility cost.

4.5.3 Sensitivity of Use Case Scenarios

The results discussed so far are based on the use case scenario defined in Section 4.5.1.
This section investigates the impact of flexibility disaggregation on three further use case
scenarios as described in the following.

• First, the same peak shaving is applied during PV surplus but with the capacity
threshold set to −180 kW. This results in a much smaller flexibility request between
11:00 and 14:00 as given in Equation (4.68) which sums up to only 22.25 kWh.

PPool
flex = (−2835,−17392,−2022) (4.68)

This very small flexibility request yields a large solution space for different disag-
gregation schedules. Additional flexibility is mainly utilized for the optimization of
grid losses and fairness by the fitness dimensions f2 and f4. This ultimately results
in negative grid losses of −31.4 %23, which however comes with a high cost in terms
of objective O1 at the EMSs. On the contrary, the cost metric QoS7 is very close
to zero for all other scheduling policies, where COST incurs nearly no cost at all.
Similarly, GA ( f4) schedules additional flexibility to improve the fairness index on
achieved self-consumption (QoE5) and autarky (QoE6) by 0.03 points with a negligi-
ble reduction in both metric values. Unlike all the other schedules, POPT distributes
the flexibility request to only 8 out of 55 EMSs, each of which can provide flexibility
with high delivery probability. However, due to the small flexibility volume, PROP
and GA ( f1) achieve similar high delivery probabilities. The remaining flexibility ser-
vice metrics look very similar to the use case scenario discussed in the last section.
Related graphs are shown in Figure A.5.

• In a completely different scenario, positive flexibility is scheduled to counteract the
expected evening peak load of residential households. The corresponding SLP has an
evening peak between 19:00 and 22:00 as depicted by the red area in Figure 4.18. The
required peak shaving is highlighted by the red dotted area and can be accomplished
by a flexibility request similar to Equation (4.69), which sums up to 230 kWh.

PPool
flex = (80000,100000,50000) (4.69)

Since this positive flexibility request is scheduled in the evening, the ESSs are almost
fully charged by the PV surplus and, hence, the flexibility is provided by discharging

23A negative grid loss ratio means that, compared to the scheduled flexibility request, a larger flexibility reac-
tion can be expected at the transformer.
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Figure 4.18: SLP H0 for German households on a winter working day provided by the
German Association of Energy and Water Industries (BDEW). This plot intentionally does
not have y-axis ticks since it only visualizes the use case scenario from which numerical
flexibility requests are derived.

the ESSs and additionally shifting flexible EV charging processes towards the night
hours. Thereby, only GA ( f2) utilizes additional flexibility to improve the grid losses
from around −0.5 % to −1.14 %, which corresponds to less than 1 kWh. The effect is
much lower compared to the above scenario since the transformer that connects the
resource providers is only slightly loaded during that time according to Figure 4.4.
The total cost for the evening peak shaving flexibility request, measured by QoS7, is
comparably high because most flexibility is provided by discharging the ESSs which
results in a 12 % lower mean battery SoC at the end of the day. Thereby, COST
outperforms the other policies by a factor of 1.60 to 3.27. Since the grid profiles
of the EMSs are close to zero during the flexibility request, the mean delivery prob-
ability is high for all scheduling policies, where QoS8 yields values of 0.975 and
above. Again, self-consumption and autarky are not influenced much by the differ-
ent disaggregation schedules of the flexibility request. Related graphs are shown in
Figure A.6.

• Finally, the residential load behavior tends to increase very rapidly in the morning
as highlighted by the green area in Figure 4.18. A flexibility request similar to the
marked green area can be scheduled to smooth the load profile between 6:00 and 9:00
as given in Equation (4.70). This positive flexibility request sums up to 200 kWh.

PPool
flex = (50000,100000,50000) (4.70)

Since not many EV charging processes are pending in the morning, the ESSs are pre-
charged from the grid during the night and will reach 0 % SoC after delivering the
flexibility request. Due to this limited flexibility potential, consequently, not much
additional flexibility is scheduled by the different policies, especially by GA ( f2).
EQUAL, PROP, and COST reach nearly even proportional flexibility participation
among the EMSs (QoS5), while the other schedules vary to a greater extent, however,
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no large outliers are recorded. Similar to the use case of evening peak shaving, the
positive flexibility comes with a higher total flexibility cost (QoS7) than the negative
flexibility of PV generation shaving. However, the differences between the schedul-
ing policies are much smaller due to the limited flexibility provided by EV charging
processes. The mean delivery probability measured by QoS8 is similarly high as with
the evening peak shaving with values above 0.975, except for GA ( f2) and GA ( f4)
which yield reduced metric scores of 0.89 and 0.94. Finally, the number of EMSs
with very high self-consumption (QoE5) is reduced. This consequently leads to some
EMSs with very low autarky, especially with GA ( f2). Related graphs are shown in
Figure A.7.

From these three additional scenarios, it follows that GA ( f2) and GA ( f4), which aim for
minimum grid losses and maximum fairness index, highly contradict to flexibility cost and
delivery probability. Consequently, there needs to be a trade-off between the objectives
of the resource aggregator and the DSO. This is possible with the GA which allows the
selection of a suitable chromosome from the Pareto-set posteriorly.

4.6 Applicability

This section deals with the practical implementation of flexibility disaggregation to dis-
tributed EMSs using the linear heuristic from Section 4.4.1 and the GA from Section 4.4.2.
Thereby, possible real-life application scopes are introduced. Moreover, technical and legal
challenges, as well as limitations are discussed. Finally, an extension towards ASs in the
form of reserve power disaggregation is presented.

4.6.1 Scope of Application

The flexibility pools allow aggregating small flexibility capabilities from distributed EMSs
to market-sized flexibility potential, while the disaggregation of flexibility requests to the
flexibility pool can reach a certain quality of service and fairness for the resource providers.
This offers the potential for different applications on the energy market or direct flexibility
activation by the DSOs, where three ideas are discussed in the following.

• By scheduling flexibility to distributed EMSs, a Balance Responsible Party (BRP)
can optimize its balancing group. Thereby, flexibility is scheduled to compensate
for supply and demand mismatch during the planning horizon, e. g., a day ahead.
Unpredictable rebound effects that can happen before and after the flexibility request
must be considered by the BRP, however, the rebound will not create critical new
peaks due to objective O3 of the EMSs. Furthermore, if a direct shift of energy from
one time slot to another is desired, multiple opposite flexibility requests can be placed
at once which most likely results in the desired energy shift, as given by the example
in Figure 4.19. Not only the ability to request flexibility helps the BRP to better plan
its balancing group, but also the feedback from the EMSs with its optimal operational
grid profiles is more accurate than using SLPs.
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Figure 4.19: Energy shift of 300 kWh from 9:00/10:00 to 16:00/17:00 using two opposite
flexibility requests.

• The resource aggregator can dynamically assign flexibility to the flexibility pool
during the day. Since the linear heuristic schedules the flexibility to one time slot
after another, it is most suitable for dynamic intraday flexibility disaggregation. This
allows the resource aggregator to interact with the intraday markets and to control
flexibility delivery in hourly or quarter-hourly blocks on the fly. Using the receding
horizon approach for the MILP of the EMSs, it is further possible to keep a future
flexibility horizon of for example 24 h and also possible to integrate the actual uncer-
tainty realization into the control loop.

• The DSO may request flexibility from distributed EMSs to shave load and genera-
tion peaks, smooth fast grid utilization changes, or solve grid congestion in the
power distribution grid. These possible application scenarios are similar to the use
case scenarios from Sections 4.5.1 and 4.5.3. From the power grid perspective, only
fast changes and critical peak loads are relevant, hence the rebound effect of the flex-
ibility provision can be neglected as long as it does not cause further grid issues. Grid
congestion relates to the overloading of transformers or certain power lines, which
can be solved by scheduling opposite flexibility to the connected regions similar to
nowadays applied re-dispatch actions.. Request from the power grid operator can
either be issued via a local flexibility market or as a direct control signal if the DSO
faces congestion problems. Especially in this application scenario, it is important to
provide flexibility with minimum or at least reduced grid losses because grid losses
put additional stress on the power distribution grid.
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4.6.2 Technical Challenges

The main technical limitation for applying the proposed methods in the field is the lack
of computational power for MILP at the distributed EMSs. Most systems run on low-
performance hardware such as the single-board computer Raspberry Pi, which is based on
a 4-core ARM chip. Compared to the x86 instruction set, which most desktop computers
and servers use, there are not many MILP solvers that efficiently run on ARM hardware.
However, the ARM architecture is getting more popular and since 2020 one of the top-
ranked supercomputers Fugaku uses ARM chips24. Meanwhile, heavy optimization runs
of the MILP problem can be performed in cloud computing environments since there is
anyhow no need for real-time control at the local EMS. Alternatively, a relaxation by lifting
the constraints for minimum charging current for EV charging will turn the MILP problem
into a much simpler linear problem. To avoid infeasible solutions, the ESS parameters may
be restricted to always be able to provide compensation flexibility for the relaxation, which
however will reduce the flexibility potential of the EMS.

Many manufacturers in the domain of PV inverters, ESSs, and home automation offer their
own implementation of a local home EMS with a variety of local energy optimization strate-
gies. In addition to that, several software-based open source alternatives exist, such as
OpenEMS.25 One open technical challenge is to connect a heterogeneous set of EMSs to
a flexibility pool. This is only possible with a well-defined Application Programming In-
terface (API), which in the context of this thesis requires a set of methods. These meth-
ods include (i) retrieval of the optimal grid profile for the planning horizon, (ii) retrieval
of the maximum and minimum possible flexibility for a single time slot, (iii) scheduling
of a flexibility request, and (iv) calculating the flexibility cost, delivery probability, self-
consumption, and autarky. Any EMS implementation that offers these functionalities can
be grouped into a flexibility pool as described in this thesis. In the context of the research
project EMSIG – funded by the Bavarian Ministry of Economic Affairs, Regional Develop-
ment, and Energy, and by the Zentrum Digitalisierung.Bayern –, a simplified version of the
MILP problem is implemented within the OpenEMS platform and is available under open
source license.26

Since both the linear heuristic and the GA require a lot of interaction with the MILP problem
of the distributed EMS, it is most reasonable to encapsulate the MILP problem (or a virtual
copy) into a black box and provide this black box to the disaggregation service of the
flexibility pool. In this way, the details of the EMSs, e. g., the number of EVs, are kept
private from the flexibility aggregator.

4.6.3 Legal and Energy Market Framework

Resource aggregators, in the role of a BRP, can trade energy on the energy market. In
Central Europe, the day-head and intraday markets are organized by the EPEX Spot market

24Top 500 list November 2022 (https://www.top500.org/lists/top500/2022/11/)
25https://openems.io/
26The proof of concept was implemented by the project partner FENECON and is available as a pull request

https://github.com/OpenEMS/openems/pull/1466 (visited on Feb. 3, 2023)
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in Paris, where energy products of different time scales, e. g., 15 minutes or one hour, are
traded with a minimum capacity of 0.1 MWh. Consequently, to be able to place reasonable
orders, a flexibility pool must contain a minimum of 100 EMSs, each of which provides
1 kWh. Especially the possibility to place loop blocks to the day-ahead market – a com-
bination of two blocks that are either executed or rejected together – allows for offering
flexibility with rebound effects as demonstrated in Figure 4.19.

In the case of grid-supportive flexibility for the DSO, there are two possible frameworks.
First, similar to the EV charging-as-a-service from Section 3.6.3, the Energy Industry Law
(§ 14a EnWG) can be applied in Germany to reduce the grid usage fees for flexible appli-
ances. In turn, it allows the DSO to request flexibility. In this way, reduced grid usage fees
are granted all over the time even if no flexibility is required by the DSO. A second option is
the newly introduced EPEX localflex market [50] or similar local flexibility markets, which
connect flexibility providers with Transmission System Operators (TSOs) and DSOs via a
market platform to trade long-term and short-term flexibility.

4.6.4 Possible Extension of Reserve Power Flexibility

The MILP formulation of the energy optimization problem of an EMS can also schedule
ASs in the form of aFRR under Assumption A17. These power reserves are usually traded
on larger time blocks of four hours and require specific hardware controllers in place, e. g.,
a droop controller that reacts on under- and over-frequency events. Therefore, in this EMS
model, only the stationary ESS is considered for reserve power, because it is always avail-
able and may provide the required control functionality.

Reserve Power Request In contrast to power flexibility, scheduling reserve power does
not directly influence the grid profile at the EMS, but only adds additional constraints to
the decision variables, such that the reserve power can be provided if activated. The upper
and lower reserve power bounds can be determined by maximizing and minimizing the
ESS usage as in Equations (4.71) and (4.72). The possible reserve power is the difference
between the optimal ESS profile PESS(t) and its limits.

Pmax
ESS (t) = max

MEV,i(t),PEV,i(t),MESS(t),P+
ESS(t),P

−
ESS(t)

PESS(t) (4.71)

Pmin
ESS(t) = min

MEV,i(t),PEV,i(t),MESS(t),P+
ESS(t),P

−
ESS(t)

PESS(t) (4.72)

To provide reserve power of Pres(t), the utilization of the ESS in terms of power capacity
PESS(t) = P+

ESS(t)−P−ESS(t) must be restricted to have a safety margin of Pres(t) towards its
maximum or minimum possible value depending on the direction of the requested reserve
power. This safety margin for reserve power capacity is added to the ESS by the constraint
in Equation (4.73). Besides the ESS, also the grid profile is similarly restricted by the
constraint in Equation (4.74) to be able to provide reserve power in case of activation.

−Pmax
ESS +Pres(t)≤ PESS(t)≤ Pmax

ESS +Pres(t) (4.73)
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Pmin
G (t)+Pres(t)≤ PG(t)≤ Pmax

G (t)+Pres(t) (4.74)

Finally, the battery SoC is restricted such that the energy required for the reserve power
can be buffered or provided for the requested duration. In general, aFRR is traded in four-
hour blocks in Europe, where the respective reserve power must be provided for the full
four hours. Since multiple EMSs participate in a VPP, a single EMS may only need to
deliver reserve power in a shorter duration, and other EMSs of the VPP can compensate
for the remaining power during the four-hour block. However, to avoid rebound effects
during the same aFRR window, each EMS must reserve energy capacity at the ESS for the
remaining four-hour block, such that even in case of aFRR activation, the initially planned
ESS schedule can be performed. That will delay potential rebound effects after reserve
power activation to blocks, where no aFRR is scheduled, which allows the VPP operator to
compensate for the required energy rebound by its local generation sources.27

For each four-hour block, where positive or negative reserve power is scheduled, the fol-
lowing constraints are added to restrict the usable battery SoC. First, the required energy
for each time slot of the aFRR block is calculated for positive and negative reserve power
in Equations (4.75) and (4.77). These two equations simply sum up the required energy
within every four-hour block if reserve power is scheduled at any time slot t ′. In both cases,
the initial energy reserve is equal to zero E+

res(t−1) = E−res(t−1) = 0. Consecutive reserve
blocks use the energy reserve from the former block as the starting point, because there is
no chance to compensate for the rebound effect in between.

E+
res(t) =

{︄
E+

res(t−1)+min(0,Pres(t)) ·∆t · 1
µESS

if cond. (4.76)

0 else
(4.75)

∃t ′ ∈
{︃⌊︃

t ·∆t

4

⌋︃
+ i : 0≤ i <

4
∆t

}︃
: Pres(t ′)> 0 (4.76)

E−res(t) =

{︄
E−res(t−1)+max(0,Pres(t)) ·∆t ·µESS if cond. (4.78)
0 else

(4.77)

∃t ′ ∈
{︃⌊︃

t ·∆t

4

⌋︃
+ i : 0≤ i <

4
∆t

}︃
: Pres(t ′)< 0 (4.78)

Second, the storage capacity in the ESS is limited by the constraint in Equation (4.79).

E+
res(t)≤ EESS(t)≤ Emax

ESS −E−res(t) (4.79)

Note that the energy calculation in Equations (4.75) and (4.77) are an approximation of the
exact power reserve scheduling problem because they neglect the fact that reserve power
that is provided by reduced (dis-)charging power does not yield charging losses that are
modeled by the factor µESS. Hence, the SoC of the ESS is slightly more restricted.
27The VPP may trade a baseload of the aggregated profiles on the day-ahead market and keep some oversupply

capacity for compensating the rebound effect, similar to the approach proposed in [117]. If the aFRR is not
activated, this capacity can be shifted by power flexibility requests to the EMSs.
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The following example is based on the same EMS configuration as in Figure 4.1 with EMS
constraints from Equations (4.14) and (4.15) enabled. Figure 4.20(a) shows the optimal
profile for the EMS in the left diagram and the ESS flexibility before the scheduling of
reserve power in the right diagram. In the morning, only negative reserve power is possible
during EV availability. At times with PV oversupply, the optimal ESS operation is to charge
the battery with medium charging power, which offers the possibility for both negative and
positive reserve power. In Figure 4.20(b), a reserve power of −6 kW is scheduled between
12:00 and 13:00. First, the remaining ESS charging power flexibility in the right diagram
is limited during that time. Furthermore, the battery SoC is restricted to keep the battery
below approximately 60 % during the reserve power block to be able to buffer the reserve
power for at least four hours. This causes the optimal schedule (left diagram) to alter from
the original optimal one, and the ESS charging is partially shifted outside the four-hour
block. In the case of aFRR activation, the ESS provides the scheduled reserve power and
the optimal EMS profile alters again in Figure 4.20(c). Note that requirement of activation is
first known at 12:00, hence the EMS sticks to the planned optimal profile before. Because
the rebound effect of the ESS can only happen outside the four-hour block, the optimal
profile between 13:00 and 16:00 stays the same as well.

Reserve Power Cost and Uncertainty Compared to power flexibility, the reserve power
generates two cost types, once at the time of scheduling the reserve power and once for its
activation. This fits the reserve power market, which has a capacity price and an energy
price, as explained in Section 2.1.2. First, the additional constraints on the ESS for power
and energy reservation can cause sub-optimal operational profiles for the EMS at the time
of reserve power scheduling. This results in the direct costs for the power reservation
γsched

res (x), which are calculated similarly to power flexibility scheduling in Equation (4.29).
Second, reserve power activation may result in sub-optimal battery charging or discharging
schedules, where the cost γact

res (x) can be estimated by comparing the reserved scenario
(Osched

1 ) with the activated scenario (Osched
1 ). The total cost for reserve power is given in

Equation (4.80), where υ ∈ [0,1] is the expected activation probability.

γres(x) = γ
sched
res (x)+υ · γact

res (x) (4.80)

Reserve power delivery from the ESS is guaranteed by the added constraints during reserve
power scheduling. However, the uncertainty arising from load and PV forecast can affect
the grid profile and, hence, cause a violation of the grid limitation constraint. In the case
of reserve power activation, a higher safety margin between the activated grid profile and
the grid limitations can help to tolerate larger forecast errors. Consequently, the probabil-
ity for reserve power delivery is calculated the same as with power flexibility requests in
Equation (4.33), where x = Pres(t).

Reserve power aggregation and disaggregation are modeled similarly to power flexibility,
including the flexibility request (Pres(t))t∈T , the minimum and maximum reserve power
limits Pmin,Pool

res (t) and Pmax,Pool
res (t), and the disaggregation of a reserve power as a matrix

(JPres(t)Ke)e∈{1,...,K},t∈T . Finally, the two discussed heuristics for flexibility provision in
Section 4.4 can also be applied to reserve power requests.
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(a) Optimal profile before scheduling reserve power.
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(b) Optimal profile after scheduling −6 kW power reserve between 12:00 and 13:00.
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(c) Optimal profile after activation of the scheduled power reserve.

Figure 4.20: The same exemplary EMS from Figure 4.1 with available 4.20(a), sched-
uled 4.20(b), and activated 4.20(c) reserve power. The left diagram of each sub-figure
shows the optimal profiles of the EMS and its flexibility. The right diagram shows the ESS
optimal profile and its reserve power constraints.
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4.7 Chapter Summary

This chapter describes a MILP model for local home EMS that can utilize flexible appli-
ances for local optimization and provision of external flexibility requests. Thereby, the
main asset is the stationary ESS, from which the expectations of the resource provider are
reflected by a set of QoS and QoE metrics. Multiple of these EMSs are grouped into a
flexibility pool to reach market-sized flexibility potential, which is disaggregated to the
distributed EMSs.

Two flexibility disaggregation approaches to calculate the disaggregation vector of a flex-
ibility request to the flexibility pool are discussed. The first applies a linear heuristic that
iterates over time and splits the flexibility request into equally sized portions, which are
iteratively assigned to the best suitable EMS. Discussed disaggregation policies consider
among others cost-minimization and delivery probability maximization. The second ap-
proach implements a GA that assigns multiple time slots at once while maximizing a multi-
dimensional fitness function that encodes the objectives of the resource aggregator, the
resource provider, and the power grid operator. Starting from a set of random solutions,
improved populations are created using a crossover and a mutation operator, which by
design are cache-optimized to speed up the execution of the algorithm. From the result-
ing Pareto-optimal solution set, one suitable flexibility disaggregation is chosen posteriorly
considering the trade-off between the fitness dimensions.

These flexibility disaggregation methods are analyzed in depth using one realistic flexi-
bility request scenario based on the IEEE 906 low-voltage test feeder with regard to QoS,
fairness, and power quality aspects. Three additional flexibility request scenarios underpin
the findings. Finally, this chapter discusses different application scopes on the energy mar-
ket and gives an outlook for extending the flexibility allocation towards reserve power. The
main findings of this chapter are as follows.

• One of the simplest disaggregation policies PROP is among the best disaggregation
schedules with both a high mean metric score and fairness index in most of the QoS
and QoE metrics. Nevertheless, when specific flexibility delivery requirements must
be met, more advanced disaggregation policies should be applied, e. g., cost or deliv-
ery probability-optimal.

• The experiments of all use case scenarios show that there is a trade-off between grid
aspects (in terms of grid losses and voltage levels) and service quality metrics (cost,
probability, and participation ratio).

• Finally, the degree of self-consumption and energy autarky is not affected much by
delivering flexibility throughout the day nor major differences between the applied
disaggregation policies can be expected.
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CHAPTER 5
Conclusions and Future Work

This chapter concludes the thesis and highlights the main contributions and results in Sec-
tion 5.1. Furthermore, the limitations of the thesis are discussed in Section 5.2 together
with an outlook on how to deal with them.

5.1 Main Contributions and Results

The restructuring of the power distribution grid from central electricity supply to distributed
generation, which is necessary for a successful energy transition, will undeniably cause
power distribution grids to reach their capacity limits at peak load times. Since required
grid expansion is not always possible in a reasonable time, intelligent control of EVs and
integration of flexibility from distributed EMSs seem to be promising solutions to avoid
asset overloading and power quality issues. However, when interfering with assets owned
and operated by users, one needs to consider the customers’ requirements and objectives
during smart control. This is comparable with Internet-based services which have service-
based requirements for optimal resource allocation, e. g., downloading a file from a server
has different requirements compared to video conferences.

The two smart grid applications under investigation are charging-as-a-service for dis-
tributed EV home charging and flexibility-provision-as-a-service to distributed home EMS.
These two are chosen since both impair high loads to the power distribution system, which
are a multiple of the usual peak load, and offer decent flexibility for reasonable operational
control. The focus of this thesis is to identify technical QoS and QoE aspects that measure
the expected and received service quality by the users, which is only partially discussed in
the literature. Furthermore, the thesis proposes different scalable and responsive resource
allocation mechanisms for both domains that offer efficient power grid utilization, conform
with legacy control capabilities, and consider quality of service and fairness aspects.

In the domain of EV charging-as-a-service, a standardized charging service model is intro-
duced in Chapter 3, from which a comprehensive set of QoS and QoE metrics is derived.
These metrics measure among others the ratio of charged energy to the requested energy,
assess the continuity of charging power rate, reflect the battery SoC at departure, and con-
sider the ability to reach the next destination. In addition to the quality metrics, fairness is
discussed as the deviation of received service quality metrics among the distributed charg-
ing services using a fairness index that is decoupled from the metric scores.
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The efficient and scalable online resource allocation to distributed EV charging processes
is performed via a charging packet queuing protocol that takes charging process parame-
ters for prioritization and offers not only temporal charging slot allocation but also variable
charging rates, complying with legacy control capabilities. The second allocation algo-
rithm is inspired by probabilistic MAC methods from the networking context and imple-
ments a try-error access schema to the power grid that is extended to variable charging
rates. Thereby, the charging processes sample random times from an exponential backoff
window to defer their charging process in the case of grid asset overloading. QoS control is
integrated by configuring additional waiting times and window sizes using charging service
parameters.

The proposed solutions are evaluated with a co-simulation of the radial IEEE 906 low-
voltage test feeder using realistic EV driving patterns from a mobility survey in Germany.
In contrast to simpler queuing and probabilistic allocation strategies, QoS-aware alloca-
tion that considers laxity are superior in finishing all EV charging service in time. How-
ever, none of the applied approaches, namely First-Come-First-Served (FCFS), Earliest-
Departure-First (EDF), Least-Laxity-First (LLF), Proportional (PROP), Weighted Fair
Queuing (WFQ), Dynamically Weighted Fair Queuing (DWFQ), Distributed Coordination
Function (DCF), and Enhanced Distributed Channel Access (EDCA), outperforms in all
QoS metrics. Nevertheless, the proposed DWFQ performs well in most metrics and addi-
tionally achieves good impact values on power grid losses and the power quality in terms of
voltage level. A high fairness level is desired to keep customers confident in the smart grid
application, which is not necessarily measured only at the end of the charging service but
can also be assessed throughout charging. This is highly important when some EVs need to
leave earlier than their planned departure. Finally, the experiments show that intelligent EV
charging control can limit the additional load for EV charging service to the peak load of the
investigated low-voltage distribution grid without EV charging, while with smart resource
allocation, all requirements of the EV driver can be fulfilled with high service quality.

In the domain of flexibility-provision-as-a-service to distributed home EMS, a MILP prob-
lem formulation is introduced in Chapter 4 that models flexible appliances at private house-
holds and hierarchically performs an offline optimization of the flexibility provided by EV
charging processes and a stationary ESS using four objective functions. First, the energy
consumption from the power grid is minimized, while the EV and ESS are utilized to di-
rectly consume local PV generation or store energy for later use. Second, the EV charging
profiles are blocked such that no repetitive on-off switching of the charging services occurs.
Finally, the maximum and minimum grid profile is reduced and the ESS usage is optimized
to be able to compensate for forecast uncertainty. The solution space of the MILP allows
scheduling external power flexibility requests to the EMS, which are then provided by the
flexible assets. Multiple distributed EMSs are grouped to reach market-relevant flexibility
potential. External flexibility requests change the optimal operation of the EMSs and may
therefore impose an impact on the expectations of the user. This thesis defines a set of
QoS and QoE metrics that capture the received and perceived service quality of flexibility
disaggregation, which among others include metrics to measure the participation ratio to a
flexibility request, the achieved level of self-consumption and energy autarky, and the total
cost and flexibility delivery probability for the resource aggregator.
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To disaggregate an external flexibility request to a set of distributed EMSs, two heuris-
tics are proposed that consider several aspects of service quality during disaggregation.
The linear heuristic iteratively assigns portions of the flexibility request to the single
EMSs time slot after time slot, and can heuristically optimize different objectives using
one of the four disaggregation policies: Proportional (PROP), equal-share (EQUAL),
cost-optimal (COST), and probability-optimal (POPT). In contrast to the linear heuristic,
the meta heuristic can solve multiple objectives over multiple time slots at once and the
proposed GA implementation returns the Pareto-optimal solution set, from which one so-
lution can be chosen a posteriori. The GA operators are designed in a way to consider
problem-specific constraints and produce valid offspring chromosomes with high probabil-
ity. Furthermore, due to the iterative application of crossover and mutation, values of the
multi-dimensional fitness function can be cached between generations, which consequently
improves the performance of the GA.

Evaluations of the flexibility disaggregation on the same low-voltage test feeder with a
flexibility pool of 55 EMSs show that both methods perform reasonably well in terms of
calculation performance and targeted objectives. However, the performance in terms of
QoS differs between the disaggregation policies and multi-objective weighting. The simple
PROP disaggregation policy achieves both high quality metric scores and fairness index in
most QoS metrics. However, the best disaggregation strategy highly depends on the specific
use case, e. g., cost-optimal and probability-optimal can achieve much better results for the
resource aggregator with reduced service quality for the resource provider. The evaluation
results further show that for flexibility disaggregation there is a trade-off between QoS to
the user and power grid aspects in terms of grid losses and voltage levels. Finally, the
investigated use case scenarios and their flexibility request do not have a large impact on
the overall self-consumption and energy autarky of the single EMS and there are no big
differences between different flexibility disaggregations.

5.2 Limitations and Outlook

The most important shortcoming of the thesis is that only technical QoS parameters are dis-
cussed for the two smart grid applications. However, non-technical quality aspects, which
may have a large impact on the users’ perception as well, are not considered. Examples
include the billing process for EV charging and flexibility provision, or the simplicity to
provide the required charging parameters to the system. In addition, the defined QoS and
QoE metrics are based on a literature review and the expected perception of service quality
by the author of the thesis. Extended user surveys are required to confirm these theories
and understand the different importance of the QoS and QoE metrics. Only after including
real users in the loop, one can make a valid judgment of the performance of charging-as-
a-service algorithms on the QoS metrics perceived by the user. Nevertheless, this thesis
already demonstrates that with the integration of service-oriented smart grid control, user
satisfaction with technical QoS and QoE metrics can be improved.

This thesis relies on assumptions on EV charging, the power distribution grid, and dis-
tributed ESSs. The author of this thesis believes that when moving from private EV home

5.2 Limitations and Outlook 149



charging to workplace or public charging, some adaptions to the QoS metrics as well as
the smart grid application algorithms are required. For example, users at public charging
stations will most likely not care much about charging rate variations or the SoC at depar-
ture28 but are interested more in the charged energy, which is the most important fact for
short charging stops. On the other side, workplace charging is usually managed by load
management software at the grid connection point, which can be integrated into the pro-
posed system by modeling the load management as a SU that limits the charging current
of the parking lot. Future EV charging control protocols with potential V2X support will
allow a more fine-granular charging control, which may eliminate the minimum charging
current and enable more advanced flexibility integration of the EV into home EMSs. This
will require an adoption of the MILP at home EMS, however, have only a limited impact
on the flexibility disaggregation.

This thesis discusses two possible smart grid applications where users may get actively in-
volved in future smart grid operations by providing flexibility to the power grid. In addition
to that, further smart grid applications are worth investigating, e. g., control of heat pumps
which enables sector-coupling, or other consumer products like washing machines and air
dryers. Furthermore, the potential interaction of parallel smart grid applications in the same
power distribution grid remains an open field for research. This includes the research ques-
tions on how to prioritize different applications that share the same power grid resources
and how to utilize decentralized flexibility to support other smart grid applications in a
QoS-aware manner.

28EV drivers will most likely finish charging at around 80 % SoC, after which the charging rate will drop due
to the saturation phase of the battery.
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APPENDIXA
Additional Material

A.1 Electric Vehicle Home Charging Service
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(a) Baseline and probabilistic methods using EDCA.
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(b) Aggregated transformer loading using EDCA from ten independent simulation runs.

Figure A.1: Transformer loading during a simulated day using EDCA.
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Figure A.2: QoS and QoE metrics of the different allocation policies for all 557 charging
services. The box plots show the resulting distribution among the charging services and
the circle denotes the average value. Below the box plots, the achieved fairness index F
is given. Note that for QoS1, QoE1 and QoE2 most of the charging service have very high
service quality, hence the boxes are very near to 1.0. 11 kW wallboxes, compared to 22 kW
wallboxes as in Figure 3.12
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Figure A.5: Flexibility disaggregation of small peak shaving.
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(b) Service quality metrics, fairness indices, and absolute scheduled flexibility.

Figure A.6: Flexibility disaggregation of evening peak shaving.
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(b) Service quality metrics, fairness indices, and absolute scheduled flexibility.

Figure A.7: Flexibility disaggregation of morning raise flattening.
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bič. “Fair coordination of distributed energy resources with Volt-Var control and
PV curtailment”. In: Applied Energy 286 (Mar. 2021). Article 116546.

[58] Yasin Zabihinia Gerdroodbari, Reza Razzaghi, and Farhad Shahnia. “Decentralized
control strategy to improve fairness in active power curtailment of PV inverters in
low-voltage distribution networks”. In: IEEE Transactions on Sustainable Energy
12.4 (Oct. 2021), pages 2282–2292.

[59] S.J. Golestani. “A self-clocked fair queueing scheme for broadband applications”.
In: Proceedings of INFOCOM ’94 Conference on Computer Communications. Vol-
ume 2. Toronto, ON, Canada: IEEE, June 1994, pages 636–646.

[60] Hessam Golmohamadi, Reza Keypour, Birgitte Bak-Jensen, and Jayakrishnan Rad-
hakrishna Pillai. “Optimization of household energy consumption towards day-
ahead retail electricity price in home energy management systems”. In: Sustainable
Cities and Society 47 (May 2019). Article 101468.

[61] Markus Graebig and Michael Wolfram. “WindNODE Jahrbuch 2020 - Das Schau-
fenster für intelligente Energie”. Berlin: 50Hertz Transmission GmbH, 2020,
pages 1–266.

[62] Albert G. Greenberg and Neal Madras. “How fair is fair queuing”. In: Journal of
the ACM 39.3 (July 1992), pages 568–598.

[63] David Micheal Greenwood et al. “Frequency response services designed for energy
storage”. In: Applied Energy 203 (Oct. 2017), pages 115–127.

[64] Zunaib Maqsood Haider et al. “Water-filling algorithm based approach for man-
agement of responsive residential loads”. In: Journal of Modern Power Systems
and Clean Energy 6.1 (Jan. 2018), pages 118–131.

[65] Zunaib Maqsood Haider et al. “Optimal management of a distribution feeder during
contingency and overload conditions by harnessing the flexibility of smart loads”.
In: IEEE Access 9 (Mar. 2021), pages 40124–40139.

[66] Azhar Ul-Haq, Concettina Buccella, Carlo Cecati, and Hassan A. Khalid. “Smart
charging infrastructure for electric vehicles”. In: 2013 International Conference on
Clean Electrical Power (ICCEP). Alghero, Italy: IEEE, June 2013, pages 163–169.

[67] Tuncer Haslak. “Weighted fair queuing as a scheduling algorithm for deferrable
loads in smart grids”. In: Advances in Energy System Optimization. Cham: Springer
International Publishing, 2020, pages 123–141.

[68] Felix Heider, Amra Jahic, Maik Plenz, Konstantin Tröger, and Detlef Schulz. “A
generic EV charging model extracted from real charging behaviour”. In: 2022 IEEE
IAS Global Conference on Emerging Technologies (GlobConET). Arad, Romania:
IEEE, 2022, pages 393–398.

[69] Emil Hillberg et al. Flexibility needs in the future power system. Technical report.
ISGAN, Mar. 2019. URL: https : / / www . iea - isgan . org / wp - content /
uploads / 2019 / 03 / ISGAN _ DiscussionPaper _ Flexibility _ Needs _ In _
Future_Power_Systems_2019.pdf (visited on Feb. 27, 2023).

162 REFERENCES

http://dx.doi.org/10.1016/j.apenergy.2021.116546
http://dx.doi.org/10.1016/j.apenergy.2021.116546
http://dx.doi.org/10.1109/TSTE.2021.3088873
http://dx.doi.org/10.1109/TSTE.2021.3088873
http://dx.doi.org/10.1109/TSTE.2021.3088873
http://dx.doi.org/10.1109/INFCOM.1994.337677
http://dx.doi.org/10.1016/j.scs.2019.101468
http://dx.doi.org/10.1016/j.scs.2019.101468
http://dx.doi.org/10.1145/146637.146658
http://dx.doi.org/10.1016/j.apenergy.2017.06.046
http://dx.doi.org/10.1016/j.apenergy.2017.06.046
http://dx.doi.org/10.1007/s40565-017-0340-x
http://dx.doi.org/10.1007/s40565-017-0340-x
http://dx.doi.org/10.1109/ACCESS.2021.3064895
http://dx.doi.org/10.1109/ACCESS.2021.3064895
http://dx.doi.org/10.1109/ICCEP.2013.6586984
http://dx.doi.org/10.1109/ICCEP.2013.6586984
http://dx.doi.org/10.1007/978-3-030-32157-4_8
http://dx.doi.org/10.1007/978-3-030-32157-4_8
http://dx.doi.org/10.1109/GlobConET53749.2022.9872505
http://dx.doi.org/10.1109/GlobConET53749.2022.9872505
https://www.iea-isgan.org/wp-content/uploads/2019/03/ISGAN_DiscussionPaper_Flexibility_Needs_In_Future_Power_Systems_2019.pdf
https://www.iea-isgan.org/wp-content/uploads/2019/03/ISGAN_DiscussionPaper_Flexibility_Needs_In_Future_Power_Systems_2019.pdf
https://www.iea-isgan.org/wp-content/uploads/2019/03/ISGAN_DiscussionPaper_Flexibility_Needs_In_Future_Power_Systems_2019.pdf


[70] Christian Hinrichs and Michael Sonnenschein. “A distributed combinatorial op-
timisation heuristic for the scheduling of energy resources represented by self-
interested agents”. In: International Journal of Bio-Inspired Computation 10.2
(Jan. 2017), pages 69–78.

[71] Md Murshadul Hoque, Mohsen Khorasany, Reza Razzaghi, Mahdi Jalili, and Hao
Wang. “Network-aware coordination of aggregated electric vehicles considering
charge-discharge flexibility”. In: IEEE Transactions on Smart Grid (June 2022).
Early Access.

[72] Vahid Hosseinnezhad, Miadreza Shafie-khah, Pierluigi Siano, and João P.S. Catalão.
“Optimal home energy management for electric flexibility provision”. In: 2019
IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). Bucharest,
Romania: IEEE, Oct. 2019, pages 1–6.

[73] Tobias Hoßfeld, Lea Skorin-Kapov, Poul E. Heegaard, and Martín Varela. “Defi-
nition of QoE fairness in shared systems”. In: IEEE Communications Letters 21.1
(Jan. 2017), pages 184–187.

[74] Tobias Hoßfeld, Lea Skorin-Kapov, Poul E. Heegaard, and Martín Varela. “A new
QoE fairness index for QoE management”. In: Quality and User Experience 3.1
(Feb. 2018), page 4.

[75] Qian Hu, Siqi Bu, and Vladimir Terzija. “A distributed P and Q provision based
voltage regulation scheme by incentivized EV fleet charging for resistive distribu-
tion networks”. In: IEEE Transactions on Transportation Electrification 7.4 (Dec.
2021), pages 2376–2389.

[76] Akhtar Hussain and Petr Musilek. “Fairness and utilitarianism in allocating energy
to EVs during power contingencies using modified division rules”. In: IEEE Trans-
actions on Sustainable Energy 13.3 (July 2022), pages 1444–1456.

[77] Shahid Hussain, Mohamed A. Ahmed, and Young-Chon Kim. “Efficient power
management algorithm based on fuzzy logic inference for electric vehicles park-
ing lot”. In: IEEE Access 7 (2019), pages 65467–65485.

[78] Shahid Hussain, Mohamed A. Ahmed, Ki-Beom Lee, and Young-Chon Kim.
“Fuzzy logic weight based charging scheme for optimal distribution of charging
power among electric vehicles in a parking lot”. In: Energies 13.12 (June 2020).
Article 3119.

[79] Shahid Hussain, Ki-Beom Lee, Mohamed A. Ahmed, Barry Hayes, and Young-
Chon Kim. “Two-stage fuzzy logic inference algorithm for maximizing the quality
of performance under the operational constraints of power grid in electric vehicle
parking lots”. In: Energies 13.18 (Sept. 2020). Article 4634.

[80] IEA. Global EV outlook 2020. Technical report. Paris: IEA, June 2020. URL:
https://www.iea.org/reports/global- ev- outlook- 2020 (visited on
May 11, 2021).

REFERENCES 163

http://dx.doi.org/10.1504/IJBIC.2017.085895
http://dx.doi.org/10.1504/IJBIC.2017.085895
http://dx.doi.org/10.1504/IJBIC.2017.085895
http://dx.doi.org/10.1109/TSG.2022.3204761
http://dx.doi.org/10.1109/TSG.2022.3204761
http://dx.doi.org/10.1109/ISGTEurope.2019.8905468
http://dx.doi.org/10.1109/LCOMM.2016.2616342
http://dx.doi.org/10.1109/LCOMM.2016.2616342
http://dx.doi.org/10.1007/s41233-018-0017-x
http://dx.doi.org/10.1007/s41233-018-0017-x
http://dx.doi.org/10.1109/TTE.2021.3068270
http://dx.doi.org/10.1109/TTE.2021.3068270
http://dx.doi.org/10.1109/TTE.2021.3068270
http://dx.doi.org/10.1109/TSTE.2022.3161897
http://dx.doi.org/10.1109/TSTE.2022.3161897
http://dx.doi.org/10.1109/ACCESS.2019.2917297
http://dx.doi.org/10.1109/ACCESS.2019.2917297
http://dx.doi.org/10.1109/ACCESS.2019.2917297
http://dx.doi.org/10.3390/en13123119
http://dx.doi.org/10.3390/en13123119
http://dx.doi.org/10.3390/en13184634
http://dx.doi.org/10.3390/en13184634
http://dx.doi.org/10.3390/en13184634
https://www.iea.org/reports/global-ev-outlook-2020


[81] IEA. Annual energy storage deployment, 2013-2019. Technical report. Paris: IEA,
Oct. 2022. URL: https://www.iea.org/data-and-statistics/charts/
annual- energy- storage- deployment- 2013- 2019- 2 (visited on Feb. 27,
2023).

[82] IEA. Global electric car stock, 2010-2021. Technical report. Paris: IEA, Oct. 2022.
URL: https://www.iea.org/data- and- statistics/charts/global-
electric-car-stock-2010-2021 (visited on Feb. 27, 2023).

[83] IEA. Heat pumps. Technical report. Paris: IEA, Sept. 2022. URL: https://www.
iea.org/reports/heat-pumps.

[84] Muhandiram Arachchige Subodha Tharangi Ireshika et al. “Optimal power track-
ing for autonomous demand side management of electric vehicles”. In: Journal of
Energy Storage 52 (Aug. 2022). Article 104917.

[85] Md Shariful Islam, Nadarajah Mithulananthan, and Kwang Y. Lee. “Suitability of
PV and battery storage in EV charging at business premises”. In: IEEE Transac-
tions on Power Systems 33.4 (July 2018), pages 4382–4396.

[86] ITU. ITU-T E.800 - Series E: Overall network operation, telephone service, service
operation and human factors. Technical report. ITU-T, Sept. 2008, page 30. URL:
https://www.itu.int/rec/T-REC-E.800-200809-I/en.

[87] J. Jaffe. “Bottleneck flow control”. In: IEEE Transactions on Communications 29.7
(July 1981), pages 954–962.

[88] Raj Jain, Dah-Ming Chiu, and William Hawe. Dec-TR-301 - A quantitative measure
of fairness and discrimination for resource allocation in share computer system.
Technical report. Eastern Research Lab, Sept. 1984. URL: https://arxiv.org/
abs/cs/9809099 (visited on Feb. 27, 2023).

[89] Raka Jovanovic, Sertac Bayhan, and Islam Safak Bayram. “Optimization of elec-
tric vehicle charge scheduling with consideration of battery degradation”. In: 2022
24th European Conference on Power Electronics and Applications (EPE’22 ECCE
Europe). Hanover, Germany: IEEE, Sept. 2022, pages 1–11.

[90] Kai-Philipp Kairies et al. “Market and technology development of PV home storage
systems in Germany”. In: Journal of Energy Storage 23 (June 2019), pages 416–
424.

[91] Frank Kelly. “Charging and rate control for elastic traffic”. In: European Transac-
tions on Telecommunications 8.1 (Feb. 1997), pages 33–37.

[92] Srinivasan Keshav. “An engineering approach to computer networking: ATM net-
works, the Internet, and the telephone network”. 9th edition. Reading, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., May 1997, pages 1–660.

[93] KFW. Ladestationen für Elektroautos – Wohngebäude. June 2021. URL: https:
//www.kfw.de/s/deiBGYew (visited on June 25, 2021).

[94] Fanxin Kong, Xue Liu, Zhonghao Sun, and Qinglong Wang. “Smart rate control
and demand balancing for electric vehicle charging”. In: 2016 ACM/IEEE 7th Inter-
national Conference on Cyber-Physical Systems (ICCPS). Vienna, Austria: IEEE,
Apr. 2016, pages 1–10.

164 REFERENCES

https://www.iea.org/data-and-statistics/charts/annual-energy-storage-deployment-2013-2019-2
https://www.iea.org/data-and-statistics/charts/annual-energy-storage-deployment-2013-2019-2
https://www.iea.org/data-and-statistics/charts/global-electric-car-stock-2010-2021
https://www.iea.org/data-and-statistics/charts/global-electric-car-stock-2010-2021
https://www.iea.org/reports/heat-pumps
https://www.iea.org/reports/heat-pumps
http://dx.doi.org/10.1016/j.est.2022.104917
http://dx.doi.org/10.1016/j.est.2022.104917
http://dx.doi.org/10.1109/TPWRS.2017.2774361
http://dx.doi.org/10.1109/TPWRS.2017.2774361
https://www.itu.int/rec/T-REC-E.800-200809-I/en
http://dx.doi.org/10.1109/TCOM.1981.1095081
https://arxiv.org/abs/cs/9809099
https://arxiv.org/abs/cs/9809099
http://dx.doi.org/10.1016/j.est.2019.02.023
http://dx.doi.org/10.1016/j.est.2019.02.023
http://dx.doi.org/10.1002/ett.4460080106
https://www.kfw.de/s/deiBGYew
https://www.kfw.de/s/deiBGYew
http://dx.doi.org/10.1109/ICCPS.2016.7479118
http://dx.doi.org/10.1109/ICCPS.2016.7479118


[95] Eleftherios O. Kontis, Georgios C. Kryonidis, Andreas I. Chrysochos, Charis S. De-
moulias, and Grigoris K. Papagiannis. “Effect of load modelling in coordinated ac-
tive power curtailment of distributed renewable energy sources”. In: Mediterranean
Conference on Power Generation, Transmission, Distribution and Energy Conver-
sion (MedPower 2016). Belgrade, Serbia: Institution of Engineering and Technol-
ogy, Nov. 2016, pages 1–8.

[96] Georgios C. Kryonidis, Charis S. Demoulias, and Grigoris K. Papagiannis. “A new
voltage control scheme for active medium-voltage (MV) networks”. In: Electric
Power Systems Research 169 (Apr. 2019), pages 53–64.

[97] Georgios C. Kryonidis et al. “Distributed reactive power control scheme for the
voltage regulation of unbalanced LV grids”. In: IEEE Transactions on Sustainable
Energy 12.2 (Apr. 2021), pages 1301–1310.

[98] Michael Lechl and Stefan Feilmeier. EMSIG: Energy management system data.
OpenEMS Association e.V. Apr. 2021. URL: https://openems.io/research/
emsig/ (visited on Nov. 2, 2021).

[99] Donghun Lee and Kwanho Kim. “Recurrent neural network-based hourly predic-
tion of photovoltaic power output using meteorological information”. In: Energies
12.2 (Jan. 2019). Article 215.

[100] Zachary J. Lee, Tongxin Li, and Steven H. Low. “ACN-Data: Analysis and appli-
cations of an open EV charging dataset”. In: Proceedings of the Tenth ACM Inter-
national Conference on Future Energy Systems. e-Energy ’19. Phoenix, AZ, USA:
Association for Computing Machinery, June 2019, pages 139–149.

[101] Zachary J. Lee, Sunash Sharma, Daniel Johansson, and Steven H. Low. “ACN-
Sim: An open-source simulator for data-driven electric vehicle charging research”.
In: IEEE Transactions on Smart Grid 12.6 (Nov. 2021), pages 5113–5123.

[102] Zachary J. Lee et al. “Adaptive charging networks: A framework for smart elec-
tric vehicle charging”. In: IEEE Transactions on Smart Grid 12.5 (Sept. 2021),
pages 4339–4350.

[103] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. “Deadline schedul-
ing in the Linux kernel”. In: Software: Practice and Experience 46.6 (June 2016),
pages 821–839.

[104] Antoine Lesage-Landry, Han Wang, Iman Shames, Pierluigi Mancarella, and
Joshua A. Taylor. “Online convex optimization of multi-energy building-to-grid
ancillary services”. In: IEEE Transactions on Control Systems Technology 28.6
(Nov. 2020), pages 2416–2431.

[105] Hanoch Levy, Benjamin Avi-Itzhak, and David Raz. “Principles of fairness quan-
tification in queueing systems”. In: Network Performance Engineering: A Hand-
book on Convergent Multi-Service Networks and Next Generation Internet. Lec-
ture Notes in Computer Science, vol 5233. Berlin, Heidelberg: Springer, 2011,
pages 284–300.

REFERENCES 165

http://dx.doi.org/10.1049/cp.2016.1049
http://dx.doi.org/10.1049/cp.2016.1049
http://dx.doi.org/10.1016/j.epsr.2018.12.014
http://dx.doi.org/10.1016/j.epsr.2018.12.014
http://dx.doi.org/10.1109/TSTE.2020.3042855
http://dx.doi.org/10.1109/TSTE.2020.3042855
https://openems.io/research/emsig/
https://openems.io/research/emsig/
http://dx.doi.org/10.3390/en12020215
http://dx.doi.org/10.3390/en12020215
http://dx.doi.org/10.1145/3307772.3328313
http://dx.doi.org/10.1145/3307772.3328313
http://dx.doi.org/10.1109/TSG.2021.3103156
http://dx.doi.org/10.1109/TSG.2021.3103156
http://dx.doi.org/10.1109/TSG.2021.3074437
http://dx.doi.org/10.1109/TSG.2021.3074437
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1109/TCST.2019.2944328
http://dx.doi.org/10.1109/TCST.2019.2944328
http://dx.doi.org/10.1007/978-3-642-02742-0_13
http://dx.doi.org/10.1007/978-3-642-02742-0_13


[106] Yang Li, Meng Han, Zhen Yang, and Guoqing Li. “Coordinating flexible demand
response and renewable uncertainties for scheduling of community integrated en-
ergy systems with an electric vehicle charging station: A bi-level approach”. In:
IEEE Transactions on Sustainable Energy 12.4 (Oct. 2021), pages 2321–2331.

[107] Fynn Liegmann, Alen Murtovi, Michael Kelker, and Jens Haubrock. “Analysis
of user behaviour for modelling an electric vehicle loading profile generator”. In:
PESS 2021; Power and Energy Student Summit. online: VDE, Nov. 2021, pages 1–
5.

[108] Shengbo Liu, Liqun Fu, and Wei Xie. “Hidden-node problem in full-duplex enabled
CSMA networks”. In: IEEE Transactions on Mobile Computing 19.2 (Feb. 2020),
pages 347–361.

[109] J. A. Pecas Lopes, F. J. Soares, and P. M. Rocha Almeida. “Identifying management
procedures to deal with connection of Electric Vehicles in the grid”. In: 2009 IEEE
Bucharest PowerTech. Bucharest, Romania: IEEE, July 2009, pages 1–8.

[110] Elke Lorenz, Johannes Hurka, Detlev Heinemann, and Hans Georg Beyer. “Irradi-
ance forecasting for the power prediction of grid-connected photovoltaic systems”.
In: IEEE Journal of selected topics in applied earth observations and remote sens-
ing 2.1 (Mar. 2009), pages 2–10.

[111] Peter D. Lund, Juuso Lindgren, Jani Mikkola, and Jyri Salpakari. “Review of en-
ergy system flexibility measures to enable high levels of variable renewable elec-
tricity”. In: Renewable and Sustainable Energy Reviews 45 (May 2015), pages 785–
807.

[112] Davye Mak and Dae-Hyun Choi. “Smart home energy management in unbalanced
active distribution networks considering reactive power dispatch and voltage con-
trol”. In: IEEE Access 7 (Oct. 2019), pages 149711–149723.

[113] Yuri V. Makarov, Clyde Loutan, Jian Ma, and Phillip de Mello. “Operational im-
pacts of wind generation on California power systems”. In: IEEE Transactions on
Power Systems 24.2 (May 2009), pages 1039–1050.

[114] J. Markkula, V. Tikka, and P. Järventausta. “Local versus centralized control of
flexible loads in Power grid”. In: CIRED 2021 - The 26th International Conference
and Exhibition on Electricity Distribution. Volume 2021. Online Conference: IET,
Sept. 2021, pages 2294–2298.

[115] Sergejus Martinenas, Katarina Knezović, and Mattia Marinelli. “Management of
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