004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Doctoral Thesis (95)
- Conference Proceeding (7)
- Article (1)
- Master's Thesis (1)
- Other (1)
- Preprint (1)
Keywords
- Graphenzeichnen (7)
- Software Engineering (6)
- Graph (5)
- Multimedia (5)
- Programmanalyse (5)
- Modellierung (4)
- Semantic Web (4)
- Codegenerierung (3)
- Effizienzsteigerung (3)
- Graphentheorie (3)
Institute
- Mitarbeiter Lehrstuhl/Einrichtung der Fakultät für Informatik und Mathematik (50)
- Fakultät für Informatik und Mathematik (45)
- Sonstiger Autor der Fakultät für Informatik und Mathematik (8)
- Mitarbeiter Lehrstuhl/Einrichtung der Wirtschaftswissenschaftlichen Fakultät (2)
- Institut für IT-Sicherheit und Sicherheitsrecht (ISL) (1)
- Universität Passau (1)
The current movement towards a smart grid serves as a solution to present power grid challenges by introducing numerous monitoring and communication technologies. A dependable, yet timely exchange of data is on the one hand an existential prerequisite to enable Advanced Metering Infrastructure (AMI) services, yet on the other a challenging endeavor, because the increasing complexity of the grid fostered by the combination of Information and Communications Technology (ICT) and utility networks inherently leads to dependability challenges.
To be able to counter this dependability degradation, current approaches based on high-reliability hardware or physical redundancy are no longer feasible, as they lead to increased hardware costs or maintenance, if not both. The flexibility of these approaches regarding vendor and regulatory interoperability is also limited. However, a suitable solution to the AMI dependability challenges is also required to maintain certain regulatory-set performance and Quality of Service (QoS) levels.
While a part of the challenge is the introduction of ICT into the power grid, it also serves as part of the solution. In this thesis a Network Functions Virtualization (NFV) based approach is proposed, which employs virtualized ICT components serving as a replacement for physical devices. By using virtualization techniques, it is possible to enhance the performability in contrast to hardware based solutions through the usage of virtual replacements of processes that would otherwise require dedicated hardware. This approach offers higher flexibility compared to hardware redundancy, as a broad variety of virtual components can be spawned, adapted and replaced in a short time. Also, as no additional hardware is necessary, the incurred costs decrease significantly. In addition to that, most of the virtualized components are deployed on Commercial-Off-The-Shelf (COTS) hardware solutions, further increasing the monetary benefit.
The approach is developed by first reviewing currently suggested solutions for AMIs and related services. Using this information, virtualization technologies are investigated for their performance influences, before a virtualized service infrastructure is devised, which replaces selected components by virtualized counterparts. Next, a novel model, which allows the separation of services and hosting substrates is developed, allowing the introduction of virtualization technologies to abstract from the underlying architecture. Third, the performability as well as monetary savings are investigated by evaluating the developed approach in several scenarios using analytical and simulative model analysis as well as proof-of-concept approaches. Last, the practical applicability and possible regulatory challenges of the approach are identified and discussed.
Results confirm that—under certain assumptions—the developed virtualized AMI is superior to the currently suggested architecture. The availability of services can be severely increased and network delays can be minimized through centralized hosting. The availability can be increased from 96.82% to 98.66% in the given scenarios, while decreasing the costs by over 60% in comparison to the currently suggested AMI architecture. Lastly, the performability analysis of a virtualized service prototype employing performance analysis and a Musa-Okumoto approach reveals that the AMI requirements are fulfilled.
Computer vision aims at developing algorithms to extract high-level information from images and videos. In the industry, for instance, such algorithms are applied to guide manufacturing robots, to visually monitor plants, or to assist human operators in recognizing specific components. Recent progress in computer vision has been dominated by deep artificial neural network, i.e., machine learning methods simulating the way that information flows in our biological brains, and the way that our neural networks adapt and learn from experience. For these methods to learn how to accurately perform complex visual tasks, large amounts of annotated images are needed. Collecting and labeling such domain-relevant training datasets is, however, a tedious—sometimes impossible—task. Therefore, it has become common practice to leverage pre-available three-dimensional (3D) models instead, to generate synthetic images for the recognition algorithms to be trained on. However, methods optimized over synthetic data usually suffer a significant performance drop when applied to real target images. This is due to the realism gap, i.e., the discrepancies between synthetic and real images (in terms of noise, clutter, etc.). In my work, three main directions were explored to bridge this gap.
First, an innovative end-to-end framework is proposed to render realistic depth images from 3D models, as a growing number of solutions (especially in the industry) are utilizing low-cost depth cameras (e.g., Microsoft Kinect and Intel RealSense) for recognition tasks. Based on a thorough study of these devices and the different types of noise impairing them, the proposed framework simulates their inner mechanisms, comprehensively modeling vital factors such as sensor noise, material reflectance, surface geometry, etc. Able to simulate a wide panel of depth sensors and to quickly generate large datasets, this framework is used to train algorithms for various recognition tasks, consistently and significantly enhancing their performance compared to other state-of-the-art simulation tools.
In some cases, however, relevant 2D or 3D object representations to generate synthetic samples are not available. Considering this different case of data scarcity, a solution is then proposed to incrementally build a representation of visual scenes from partial observations. Provided observations are localized from one to another based on their content and registered in a global memory with spatial properties. Simultaneously, this memory can be queried to render novel views of the scene. Furthermore, unobserved regions can be hallucinated in memory, in consistence with previous observations, hallucinations, and global priors. The efficacy of the proposed mnemonic and generative system, trainable end-to-end, is demonstrated on various 2D and 3D use-cases.
Finally, an advanced convolutional neural network pipeline is introduced, tackling the realism gap from a novel angle. While most methods addressing this problem focus on bringing synthetic samples—or the knowledge acquired from them—closer to the real target domain, the proposed solution performs the opposite process, mapping unseen target images into controlled synthetic domains. The pre-processed samples can then be handed to downstream recognition methods, themselves purely trained on similar synthetic data, to greatly improve their accuracy.
For each approach, a variety of qualitative and quantitative studies are detailed, providing successful comparisons to state-of-the-art methods. By proposing solutions to bridge the realism gap from either side, as well as a pipeline to improve the acquisition and generation of new visual content, this thesis provides a unique perspective on the challenges of data scarcity when building robust recognition systems.
A plethora of resources made available via retrieval systems in digital libraries remains untapped in the so called long tail of the Web. These long-tail websites get considerably less visits than major Web hubs.
Zero-effort queries ease the discovery of long-tail resources by proactively retrieving and presenting information based on a user’s context. However, zero-effort queries over existing digital library structures are challenging, since the underlying retrieval system is only accessible via an API. The information need must be expressed by a query, instead of optimizing the ranking between context and resources in the retrieval system directly. We address three research questions that arise from replacing the user information seeking process by zero-effort queries.
Our first question addresses the transformation of a user query to an automatic query, derived from the context. We present means to 1) identify the relevant context on different levels of granularity, 2) derive an information need from the context via keyword extraction and personalization and 3) express this information need in a query scheme that avoids over- or under-specified queries. We address the cold start problem with an approach to bootstrap user profiles from social media, even for passive users.
With the second question, we address the presentation of resources in zero-effort query scenarios, presenting guidelines for presentation interfaces in the browser and a visualization of the triadic relationship between context, query and results. QueryCrumbs, a compact query history visualization supports recalling information found in the past and exploratory search by visualizing qualitative and quantitative query similarity.
Our last question addresses the gap between (simple) keyword queries and the representation of resources by rich and complex meta-data. We investigate and extend feature representation learning techniques centered around the skip-gram model with negative sampling. Finally, we present an approach to learn representations from network and text jointly that can cope with the partial absence of one modality.
Experimental results show close to human performance of our zero-effort query and user profile generation approach and visualizations to be helpful in terms of transparency, efficiency and support for exploratory search. These results indicate that the proposed zero-effort query approach indeed eases the discovery of long-tail resources and the accompanying visualizations further facilitate this process. The joint representation model provides a first step to bridge the gap between query and resource representation and we plan to follow and investigate this route further in the future.
Whenever software faults can endanger human life, property, or the environment, the absence of faults must be ensured with utmost care and the best technologies available. Evidence is needed showing that all requirements are satisfied and that the risk of faults is reduced. One technique to conduct such a verification task—composed of the software to verify, the specification to check, and a model of the environment—is software model checking.
To conduct a verification task with a model checker, different models of the task are constructed. We distinguish between two types of task models: syntactic task models and semantic task models, which define the respective syntactic structure (control flow) and semantic structure (state transitions, invariants) of the verification task. When constructing such models, we can observe that similar structures and substructures reappear within and among different verification tasks. For example, the same assertions to check can appear in different functions, or the same predicate can be part of different invariants to describe sets of program states. Similarities that appear during the model construction process can be the result of solving similar reasoning problems, often solved using computationally expensive procedures (as typical for model checking), over and over again. Not reusing results of solving similar problems, not having a means for conducting repeated efforts automatically, or not trying to reduce the number of similar reasoning efforts, is a waste of precious resources.
To address these problems, we present a common conceptual and technical foundation for sharing syntactic and semantic task artifacts for reuse, within and among verification runs. Both the syntactic construction of a verification task and the construction of its semantic model—which describes all possible behaviors and states—are covered. We study how commonalities and regularities in the task models can be taken into account to facilitate the process of sharing task artifacts for reuse, and to make the overall verification process more efficient and effective. We introduce abstract transducers as the theoretical foundation of this thesis: a type of finite-state transducers with an inherent notion of abstraction for states, the input alphabet, and its output alphabet. Abstracting these transducers allows us to widen both the set of input words for that they produce output and the sets of output words. Abstract transducers are instantiated as task artifact transducers to map from program structures to task artifacts to share. We show that the notion of abstraction provides a means for increasing the scope for that task artifacts are shared for reuse. We present two instances of task artifact transducers: Yarn transducers and precision transducers. We use Yarn transducers for providing code to weave into the control-flow structure of a computer program, and present the Loom analysis as a means for orchestrating the weaving process. Precision transducers provide a means for sharing abstraction precisions for reuse, thus aid in defining the level of abstraction of a semantic task model. For both types of transducers, we provide empirical evidence on their practical applicability, for example, to verify Linux kernel modules, and show that they can help in increasing the verification performance.
Main memory forensics and its special form, virtual machine introspection (VMI), are powerful tools for digital forensics and can be used to improve the security of computer-based systems. However, their use in production systems is often not possible. This work identifies the causes and offers practical solutions to apply these techniques in cloud computing and on mobile devices to improve digital forensics and incident analysis.
Four key challenges must be tackled. The first challenge is that many existing solutions are not reproducible, for example, because the corresponding software components are not available, obsolete or incompatible. The use of these tools is also often complex and can lead to a crash of the system to be monitored in case of incorrect use. To solve this problem, this thesis describes the design and implementation of Libvmtrace, which is a framework for the introspection of Linux-based virtual machines. The focus of the developed design is to implement frequently used methods in encapsulated modules so that they are easy for developers to use, optimize and test.
The second challenge is that many production systems do not provide an interface for main memory forensics and virtual machine introspection. To address this problem, this thesis describes possible solutions for how such an interface can be implemented on mobile devices and in cloud environments designed to protect main memory from unprivileged access. We discuss how cold boot attacks, the ARM TrustZone and the hypervisor of cloud servers can be used to acquire data from storage.
The third challenge is how to reconstruct information from main memory efficiently. This thesis describes how these questions can be solved by employing two practical examples. The first example involves extracting the keys of encrypted TLS connections from the main memory of applications to decrypt network traffic without affecting the performance of the monitored application. The TLSKex and DroidKex architecture describe two approaches to localize the keys efficiently with the help of semantic knowledge in the main memory of applications. The second example discusses how to monitor and document SSH sessions of potential attackers from outside of a virtual machine. It is important that the monitoring routines are not noticed by an attacker. To achieve this, we evaluate how to optimize the performance of the monitoring mechanism.
The fourth challenge is how to deal with the performance degradation caused by introspection in productive systems. This thesis discusses how this can be achieved using the example of a SIEM system. To reduce the performance overhead, we describe how to configure the monitoring routine to collect only the information needed to detect incidents. Also, we describe two approaches that permit the monitoring routine to be dynamically adjusted at runtime to extract more information if necessary so that incidents can be better analyzed.
The amount of audio, video and image data on the Web is immensely growing, which leads to data management problems based on the hidden character of Multimedia. Therefore the interlinking of semantic concepts and media data with the aim to bridge the gap between the Internet of documents and the Web of Data has become a common practice. However, the value of connecting media to its semantic meta data is limited due to lacking access methods and the absence of an adapted query language specialized for media assets and fragments. This thesis aims to extend the standard query language for the Semantic Web (SPARQL) with media specific concepts and functions. The main contributions of the work are an exhaustive survey on Multimedia query languages of the last 3 decades, the SPARQL extension specification itself and an approach for the efficient evaluation of the new query concepts. Additionally I elaborate and evaluate a meta data based media fragment similarity approach, which provides a basis for further language extensions.
We consider a number of enhancements to the standard neural network training paradigm. First, we show that carefully designed parameter update rules may replace the need for a loss function and its gradient. We introduce a parameter update rule that generalises the standard cross-entropy gradient, and allows directly controlling the relative effect of easy and hard examples on the training process. We show that the proposed update rule cannot be derived by using a loss function and yields better classification accuracy compared to training with the standard cross-entropy loss.
In addition, we study the effect of the loss function choice on the learnt representations. We introduce the Single Logit Classification (SLC) task: classifying whether a given class is the correct class for a given example, in a computationally efficient manner, based on the appropriate class logit alone. A natural principle is proposed, the Principle of Logit Separation (PoLS), as a guideline for choosing and designing loss functions suitable for the SLC task. We mathematically analyse the alignment of eleven existing and novel loss functions with this principle. Experiment results show that using loss functions that are aligned with this principle results in a representation in the logits layer in which each logit is more informative of its class correctness, leading to a considerably better SLC accuracy.
Further, we attempt to alleviate the dependency of standard neural network models on large amounts of quality labels. The task of weakly supervised one-shot detection is considered, in which at training time the model is trained without any localisation labels, and at test time it needs to identify and localise instances of unseen classes. We propose the attention similarity networks (ASN) for this task. ASN use a Siamese neural network to compute a similarity score between an exemplar and different locations in a target example. Then, an attention mechanism performs localisation by learning to attend to the correct locations. The ASN model outperforms the relevant baselines for weakly supervised one-shot detection tasks in the audio and computer vision domains.
Finally, we consider the problem of quantifying prediction confidence in the regression setting. We propose two novel algorithms for emitting calibrated prediction intervals for neural network regressors, at any given confidence level. The two algorithms require binning of the output space and training the neural network regressor as a classifier. Then, the calibration algorithms choose the intervals in the output space, making sure they contain the amount of posterior probability mass that results in the desired confidence level.
We have proposed a strategy for the creation of attributes based on hidden Markov models (HMM) characterizing the transaction from different points of view. This strategy makes it possible to integrate a broad spectrum of sequential information into the attributes of transactions. In fact, we model the authentic and fraudulent behavior of merchants and card holders according to two univariate characteristics: the date and the amount of transactions. In addition, attributes based on HMMs are created in a supervised manner, thereby reducing the need for expert knowledge for the creation of the fraud detection system. Ultimately, our HMM-based multi-perspective approach allows automated data pre-processing to model time correlations to complement and eventually replace transaction aggregation strategies to improve detection efficiency. Experiments carried out on a large set of credit card transaction data from the real world (46 million transactions carried out by Belgian card holders between March and May 2015) have shown that the strategy proposed for data preprocessing based on HMM can detect more fraudulent transactions when combined with the strategy of preprocessing reference data based on expert knowledge for the detection of credit card fraud.
In high-performance computing, one primary objective is to exploit the performance that the given target hardware can deliver to the fullest. Compilers that have the ability to automatically optimize programs for a specific target hardware can be highly useful in this context. Iterative (or search-based) compilation requires little or no prior knowledge and can adapt more easily to concrete programs and target hardware than static cost models and heuristics. Thereby, iterative compilation helps in situations in which static heuristics do not reflect the combination of input program and target hardware well. Moreover, iterative compilation may enable the derivation of more accurate cost models and heuristics for optimizing compilers. In this context, the polyhedron model is of help as it provides not only a mathematical representation of programs but, more importantly, a uniform representation of complex sequences of program transformations by schedule functions. The latter facilitates the systematic exploration of the set of legal transformations of a given program.
Early approaches to purely iterative schedule optimization in the polyhedron model do not limit their search to schedules that preserve program semantics and, thereby, suffer from the need to explore numbers of illegal schedules. More recent research ensures the legality of program transformations but presumes a sequential rather than a parallel execution of the transformed program. Other approaches do not perform a purely iterative optimization.
We propose an approach to iterative schedule optimization for parallelization and tiling in the polyhedron model. Our approach targets loop programs that profit from data locality optimization and coarse-grained loop parallelization. The schedule search space can be explored either randomly or by means of a genetic algorithm.
To determine a schedule's profitability, we rely primarily on measuring the transformed code's execution time. While benchmarking is accurate, it increases the time and resource consumption of program optimization tremendously and can even make it impractical. We address this limitation by proposing to learn surrogate models from schedules generated and evaluated in previous runs of the iterative optimization and to replace benchmarking by performance prediction to the extent possible.
Our evaluation on the PolyBench 4.1 benchmark set reveals that, in a given setting, iterative schedule optimization yields significantly higher speedups in the execution of the program to be optimized. Surrogate performance models learned from training data that was generated during previous iterative optimizations can reduce the benchmarking effort without strongly impairing the optimization result. A prerequisite for this approach is a sufficient similarity between the training programs and the program to be optimized.
Internet browsers include Application Programming Interfaces (APIs) to support Web applications that require complex functionality, e.g., to let end users watch videos, make phone calls, and play video games. Meanwhile, many Web applications employ the browser APIs to rely on the user's hardware to execute intensive computation, access the Graphics Processing Unit (GPU), use persistent storage, and establish network connections.
However, providing access to the system's computational resources, i.e., processing, storage, and networking, through the browser creates an opportunity for attackers to abuse resources. Principally, the problem occurs when an attacker compromises a Web site and includes malicious code to abuse its visitor's computational resources. For example, an attacker can abuse the user's system networking capabilities to perform a Denial of Service (DoS) attack against third parties. What is more, computational resource abuse has not received widespread attention from the Web security community because most of the current specifications are focused on content and session properties such as isolation, confidentiality, and integrity.
Our primary goal is to study computational resource abuse and to advance the state of the art by providing a general attacker model, multiple case studies, a thorough analysis of available security mechanisms, and a new detection mechanism. To this end, we implemented and evaluated three scenarios where attackers use multiple browser APIs to abuse networking, local storage, and computation. Further, depending on the scenario, an attacker can use browsers to perform Denial of Service against third-party Web sites, create a network of browsers to store and distribute arbitrary data, or use browsers to establish anonymous connections similarly to The Onion Router (Tor). Our analysis also includes a real-life resource abuse case found in the wild, i.e., CryptoJacking, where thousands of Web sites forced their visitors to perform crypto-currency mining without their consent. In the general case, attacks presented in this thesis share the attacker model and two key characteristics: 1) the browser's end user remains oblivious to the attack, and 2) an attacker has to invest little resources in comparison to the resources he obtains.
In addition to the attack's analysis, we present how existing, and upcoming, security enforcement mechanisms from Web security can hinder an attacker and their drawbacks. Moreover, we propose a novel detection approach based on browser API usage patterns. Finally, we evaluate the accuracy of our detection model, after training it with the real-life crypto-mining scenario, through a large scale analysis of the most popular Web sites.