Extending the Linked Data Cloud with Multilingual Lexical Linked Data
- A lot of information that is already available on the Web, or retrieved from local information sys-tems and social networks, is structured in data silos that are not semantically related. Semantic technologies make it apparent that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g., triplify) or querying (e.g., D2R), is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. Here we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different per-spectives. After giving the definition of Lexical Linked Data, we describe the existing datasets we collected and the new datasets we included.A lot of information that is already available on the Web, or retrieved from local information sys-tems and social networks, is structured in data silos that are not semantically related. Semantic technologies make it apparent that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g., triplify) or querying (e.g., D2R), is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. Here we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different per-spectives. After giving the definition of Lexical Linked Data, we describe the existing datasets we collected and the new datasets we included. Here we describe their format and show some use cases where we link lexical data, and show how to reuse and inference semantic data de-rived from lexical data. Different lexical resources (MultiWordNet, EuroWordNet, MEMODATA Lexicon, the Hamburg Methaphor Data-base) are connected to each other towards an Integrated Vocabulary for LLD that we evaluate and present.…
Verfasserangaben: | Ernesto William De LucaORCiDGND |
---|---|
DOI: | https://doi.org/10.5771/0943-7444-2013-5-320 |
ISSN: | 0943-7444 |
Titel des übergeordneten Werkes (Englisch): | Knowledge Organization |
Verlag: | Ergon-Verlag |
Verlagsort: | Würzburg |
Dokumentart: | Wissenschaftlicher Artikel |
Sprache: | Englisch |
Datum der Veröffentlichung (online): | 29.03.2022 |
Jahr der Erstveröffentlichung: | 2013 |
Veröffentlichende Institution: | Fachhochschule Potsdam |
Datum der Freischaltung: | 15.03.2022 |
Freies Schlagwort / Tag: | Lexical Linked Data |
GND-Schlagwort: | Linked Data; Datenintegration; Semantisches Netz; Datenstruktur |
Jahrgang: | 40 |
Ausgabe / Heft: | 5 |
Erste Seite: | 320 |
Letzte Seite: | 331 |
Fachbereiche und Zentrale Einrichtungen: | FB5 Informationswissenschaften |
FB5 Informationswissenschaften / Publikationen des FB Informationswissenschaften | |
DDC-Klassifikation: | 000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme |
Lizenz (Deutsch): | Creative Commons - CC BY-NC-SA - Namensnennung - Nicht kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International |