Filtern
Dokumenttyp
- Zeitschriftenartikel (7)
- Beitrag zu einem Tagungsband (5)
- Vortrag (2)
- Posterpräsentation (1)
Schlagworte
- Classification (3)
- Dangerous goods (3)
- Explosion protection (3)
- Explosionsschutz (3)
- Hazardous substances (3)
- Hybride Gemische (3)
- Quality assurance (3)
- Safety characteristics (3)
- Sicherheitstechnische Kenngrößen (3)
- Test method (3)
Organisationseinheit der BAM
There is no applicable existing standard for the determination of safety characteristics for hybrid mixtures. While developing a new standard in a joint research project in Germany first results from parameter studies led to a standard procedure that can be adopted by laboratories that are already testing dusts in the so called 20L-sphere with as little additional effort as necessary. In fact, one of the main objectives of this research project was to keep modifications and adjustments from the generally accepted dust testing procedures as easy and minimal as possible so as to limit potential deviations from one laboratory to another.
In this first round robin test on hybrid mixtures ever, with methane as gas component and a specific corn starch as dust sample, the practicality of the whole procedure, the scattering of the results and the deviation between the testing apparatuses is investigated. This paper summarizes the experimental procedure adopted and objectives of the first round-robin phase involving three of the four original German companies, plus volunteering laboratories from Australia, Belgium, Czech Republic, France, Poland and P.R. China. The results will have an impact on the new standard and may lead to robust data for later simulation purposes.
Laboratory test results are of vital importance for correctly classifying and labelling chemicals as “hazardous” as defined in the UN Globally Harmonized System (GHS) / EC CLP Regulation or as “dangerous goods” as defined in the UN Recommendations on the Transport of Dangerous Goods. Interlaboratory tests play a decisive role in assessing the reliability of laboratory test results. Interlaboratory tests performed over the last 10 years have examined different laboratory test methods. After analysing the results of these interlaboratory tests, the following conclusions can be drawn:
1. There is a need for improvement and validation for all laboratory test methods examined.
2. To avoid any discrepancy concerning the classification and labelling of chemicals, the use of validated laboratory test methods should be state of the art, with the results accompanied by the measurement uncertainty and (if applicable) the probability of incorrect classification.
This paper addresses the probability of correct/incorrect classification (for example, as dangerous goods) on the basis of the measurement deviation obtained from interlaboratory tests performed by the Centre for quality assurance for testing of dangerous goods and hazardous substances (CEQAT-DGHS) to validate laboratory test methods. This paper outlines typical results (e.g. so-called “Shark profiles” – the probability of incorrect classification as a function of the true value estimated from interlaboratory test data) as well as general conclusions and steps to be taken to guarantee that laboratory test results are fit for purpose and of high quality.
Die Ursachen für Chemikalienunfälle können vielfältig sein. Prävention beginnt bereits im Prüflabor, wenn Chemikalien auf ihre gefährlichen Eigenschaften getestet werden. Dazu sind Prüfmethoden entwickelt und veröffentlicht worden, die heute weltweit Anwendung finden. Auf die Validität der Prüfmethode und richtige Durchführung der Prüfung im Laboratorium müssen sich Sicherheitsfachkräfte, Transporteure oder Händler verlassen können. Anhand der in den letzten 10 Jahren im Rahmen des CEQAT-DGHS von BAM und PTB durchgeführten Ringversuche (RV) wird gezeigt, dass bei allen bisher untersuchten Prüfmethoden ein Verbesserungsbedarf besteht. Die RV müssen daher zunächst auf die Methodenverbesserung und -validierung abzielen und nicht auf Leistungstests. Das Labormanagement und die praktische Durchführung der Prüfung sind in vielen Laboratorien verbesserungsbedürftig. Der Begriff „Erfahrung der Prüfer“ ist kritisch zu sehen: Eine „lange Erfahrung mit vielen Prüfungen“ ist nicht unbedingt ein Garant für richtige Ergebnisse.
Prävention beginnt im Prüflabor, wenn Chemikalien auf ihre gefährlichen Eigenschaften getestet werden. Dazu sind Prüfmethoden entwickelt und veröffentlicht worden, die heute weltweit Anwendung finden. Auf die Validität der Prüfmethode und richtige Durchführung der Prüfung im Laboratorium müssen sich Sicherheitsfachkräfte, Transporteure oder Händler verlassen können. Anhand der in den letzten 10 Jahren im Rahmen des CEQAT-DGHS von BAM und PTB durchgeführten Ringversuche (RV) wird gezeigt, dass bei allen bisher untersuchten Prüfmethoden ein Verbesserungsbedarf besteht. Die RV müssen daher zunächst auf die Methodenverbesserung und -validierung abzielen und nicht auf Leistungstests. Das Labormanagement und die praktische Durchführung der Prüfung sind in vielen Laboratorien verbesserungsbedürftig. Der Begriff „Erfahrung der Prüfer“ ist kritisch zu sehen: Eine „lange Erfahrung mit vielen Prüfungen“ ist nicht unbedingt ein Garant für richtige Ergebnisse. Bei der Prüfung der gefährlichen Eigenschaften von Chemikalien sind Referenzmaterialen auf Grund der Instabilität in der Regel nicht verfügbar. Für Prüflaboratorien sind RV daher eine Alternative bei der Qualitätssicherung. RV sind jedoch aufwendig und können nur in relativ großen Zeitabständen durchgeführt werden. Es sind deshalb Verfahren zur Verifizierung z. B. der in den Laboratorien verwendeten Prüfapparaturen zu entwickeln. Die Entwicklung von Verifizierungsverfahren wird am Bespiel der Prüfmethode UN Test N.5 demonstriert.
CEQAT-DGHS Interlaboratory Test Programme for Chemical Safety - Need of Test Methods Validation
(2019)
Safety experts, manufacturers, suppliers, importers, employers or consumers must be able to rely on the validity of safety-related test methods and on correct test results and assessments in the laboratory. Via the eChemPortal lots of data from the REACH registration dossiers are available. However, the quality and correctness of the information remains in the responsibility of the data submitter. Unfortunately, we found more or less appropriate information on physicochemical properties and concluded that more quality or adequacy of any data submitted will be needed.
Interlaboratory tests play a decisive role in assessing the reliability of test results. Interlaboratory tests on different test methods have been performed by Bundesanstalt für Materialforschung und –prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB) in collaboration with the QuoData GmbH during the last 10 years. Significant differences between the results of the participating laboratories were observed in all interlaboratory tests. The deviations of the test results were not caused only by laboratory faults but also by deficiencies of the test method.
In view of the interlaboratory test results the following conclusions can be drawn:
• To avoid any discrepancy on classification and labelling of chemicals it should become state of the art to use validated test methods and the results accompanied by the measurement uncertainty.
• A need for improvement is demonstrated for all examined test methods. Thus, interlaboratory tests shall initially aim at the development, improvement and validation of the test methods and not on proficiency tests.
• The laboratory management and the practical execution of the tests need to be improved in many laboratories.
• The term "experience of the examiner" must be seen critically: A "long experience with many tests" is not necessarily a guarantee for correct results.
Laboratory test results are of vital importance for correctly classifying and labelling chemicals as “hazardous” as defined in the UN Globally Harmonized System (GHS) / EC CLP Regulation or as “dangerous goods” as defined in the UN Recommendations on the Transport of Dangerous Goods. Interlaboratory tests play a decisive role in assessing the reliability of laboratory test results. Interlaboratory tests performed over the last 10 years have examined different laboratory test methods. After analysing the results of these interlaboratory tests, the following conclusions can be drawn:
1. There is a need for improvement and validation for all laboratory test methods examined.
2. To avoid any discrepancy concerning the classification and labelling of chemicals, the use of validated laboratory test methods should be state of the art, with the results accompanied by the measurement uncertainty and (if applicable) the probability of incorrect classification.
This paper addresses the probability of correct/incorrect classification (for example, as dangerous goods) on the basis of the measurement deviation obtained from interlaboratory tests performed by the Centre for quality assurance for testing of dangerous goods and hazardous substances (CEQAT-DGHS) to validate laboratory test methods. This paper outlines typical results (e.g. so-called “Shark profiles” – the probability of incorrect classification as a function of the true value estimated from interlaboratory test data) as well as general conclusions and steps to be taken to guarantee that laboratory test results are fit for purpose and of high quality.
Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement with new electronic transformers is not explicitly allowed in the standards. This article presents the investigation of five gases that are normally used to calibrate devices for the determination of safety characteristics, the maximum experimental safe gap (MESG), with an electronic transformer, and the values are compared to the ones that are obtained with the standard transformer. Additionally, calorimetric measurements on the net energy of both ignition sources were performed as well as open-circuit voltage measurements. It is concluded that the classic type of transformer can be replaced by the new type obtaining the same results for the MESG and introducing the same amount of energy into the system.
The safety characteristics of flammable gases and liquids are required when identifying potentially explosive mixtures and taking appropriate actions concerning explosion protection. Examples are given here of the safe handling and evaluation of hazards during the processing, storage, transport, and disposal of flammable liquids and gases. The CHEMSAFE database is presented as a reliable source of safety characteristic data, and its new open-access version is introduced. CHEMSAFE currently contains assessed properties for about 3000 liquids, gases and mixtures. The lack of a broad experimental foundation in the extensive field of non-atmospheric conditions shows the need for further investigation and standardization. This article summarizes experimental evidence and estimation methods for safety characteristic data under non-atmospheric conditions pointing out current limitations. Suggestions for pre-normative research on safety data under non-atmospheric conditions are given.
The safety characteristics of flammable gases and liquids are required when identifying potentially explosive mixtures and taking appropriate actions concerning explosion protection. Examples are given in this review of the safe handling and evaluation of hazards during the processing, storage, transport, and disposal of flammable liquids and gases. The CHEMSAFE database is presented as a reliable source of safety characteristic data, and ist new open-access version is introduced. CHEMSAFE currently contains assessed properties for about 3000 flammable liquids, gases and mixtures. The lack of a broad experimental foundation in the extensive field of non-atmospheric conditions shows the need for further investigation and standardization. This review summarizes experimental evidence and estimation methods for safety characteristic data under non-atmospheric conditions pointing out current limitations. Suggestions for pre-normative research on safety data under nonatmospheric conditions are given.
The safety characteristics of flammable gases and liquids are required when identifying potentially explosive mixtures and taking appropriate actions concerning explosion protection. Examples are given in this review of the safe handling and evaluation of hazards during the processing, storage, transport, and disposal of flammable liquids and gases. The CHEMSAFE database is presented as a reliable source of safety characteristic data, and ist new open-access version is introduced. CHEMSAFE currently contains assessed properties for about 3000 flammable liquids, gases and mixtures. The lack of a broad experimental foundation in the extensive field of non-atmospheric conditions shows the need for further investigation and standardization. This review summarizes experimental evidence and estimation methods for safety characteristic data under non-atmospheric conditions pointing out current limitations. Suggestions for pre-normative research on safety data under nonatmospheric conditions are given.