Long range influence of boehmite nanoparticles on the nanomechanics of epoxy matrix used in carbon-fiber composites

  • Boehmite nanoparticles (AlOOH) were recently found to improve properties such as crack resistance, shrinkage and compressive strength in epoxy composites. Concentration and surface modification of boehmite nanoparticles are key factors for abovementioned enhancements. To understand the underlying mechanisms, more detailed research of micro- and nanoscopic mechanical properties is required. The presented study aims to investigate the influence of concentration and surface modification of boehmite on the stiffness of the bulk epoxy by means of AFM-based approaches: Force-Distance curves (FDC) on the sub- microscale and Intermodulation AFM and amplitude-dependent force spectroscopy (ADFS) on the nanoscale. For this purpose, stiffness-maps of epoxy filled with boehmite, with and without surface modification (HAc-boehmite) were obtained by FDC. These measurements showed a slight increase in overall stiffness of composite with increasing the nanoparticle content. The stiffening effect wasBoehmite nanoparticles (AlOOH) were recently found to improve properties such as crack resistance, shrinkage and compressive strength in epoxy composites. Concentration and surface modification of boehmite nanoparticles are key factors for abovementioned enhancements. To understand the underlying mechanisms, more detailed research of micro- and nanoscopic mechanical properties is required. The presented study aims to investigate the influence of concentration and surface modification of boehmite on the stiffness of the bulk epoxy by means of AFM-based approaches: Force-Distance curves (FDC) on the sub- microscale and Intermodulation AFM and amplitude-dependent force spectroscopy (ADFS) on the nanoscale. For this purpose, stiffness-maps of epoxy filled with boehmite, with and without surface modification (HAc-boehmite) were obtained by FDC. These measurements showed a slight increase in overall stiffness of composite with increasing the nanoparticle content. The stiffening effect was observed to be intensified with HAc-boehmite. Since the lateral resolution of FDC is not high enough to distinguish nanoparticles, this effect was assumed to be due to the inevitable inclusion of nanoparticles in the measurement. By using Intermodulation-AFM, yielding ADFS stiffness maps with the resolution of <10 nm, we were able to calculate the average stiffness of bulk epoxy without the interference of nanoparticles. It was expected that the stiffness of regions faraway from particles would be equal to neat epoxy. In contrast, the results showed a drastic increase in stiffness of epoxy with increasing boehmite concentration (0, 1, 2.5, and 15%) especially in case of introducing 15wt% HAc-boehmite. Another important observation was formation of a spatial structure with non-homogenous stiffness distribution in bulk epoxy with HAc-boehmite. The underlying mechanisms of described observations are not fully understood yet. One hypothesis is the local increase in crosslinking density which we aim to investigate in our further studies by combining Dynamic Mechanical Thermal Analysis (DMTA) and Intermodulation-AFM.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster Sevilla_D_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Media Ghasem Zadeh KhorasaniORCiD
Koautor*innen:Dorothee Silbernagel, Heinz Sturm
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:AFM; Boehmite; Epoxy nanocomposite
Veranstaltung:Frontiers in Polymer Science
Veranstaltungsort:Seville, Spain
Beginndatum der Veranstaltung:17.05.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:24.04.2020
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.