Composite subjected to low temperatures

  • To reduce the global emission of CO2, liquified natural gas (LNG) is increasingly used as fuel. As the pipeline network is not developed all around the globe, LNG needs to be transported via ship or truck. Double-walled tanks made of steel with a vacuum insulation are currently used to keep LNG at cryogenic temperatures (-162 °C; 111 K). The double-walled construction makes the tanks heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. Furthermore, there are some restrictions in carrying out in-service inspection using a double-wall design. Therefore, alternative tank designs, such as single wall glass fiber reinforced plastics (GFRP), are of growing interest. The material properties of GFRP and tank insulation at cryogenic temperatures are investigated. Liquified nitrogenTo reduce the global emission of CO2, liquified natural gas (LNG) is increasingly used as fuel. As the pipeline network is not developed all around the globe, LNG needs to be transported via ship or truck. Double-walled tanks made of steel with a vacuum insulation are currently used to keep LNG at cryogenic temperatures (-162 °C; 111 K). The double-walled construction makes the tanks heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. Furthermore, there are some restrictions in carrying out in-service inspection using a double-wall design. Therefore, alternative tank designs, such as single wall glass fiber reinforced plastics (GFRP), are of growing interest. The material properties of GFRP and tank insulation at cryogenic temperatures are investigated. Liquified nitrogen (-196 °C; 77 K) is used for all experiments at cryogenic temperatures for safety reasons. Thermal conductivity of different layers are investigated and compared. Mechanical properties are analyzed by performing 3-point bending tests on cooled specimen. When cooled, the specimens fail at a higher force, but all layers of the laminate fail at once. Further investigations into the characterization of material properties, such as CT scans are currently in preparation. Evaluation is done by FEM and in approximation via analytical solutions.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ICMEA_2020.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Jan Werner
Koautor*innen:Frank Otremba, Philipp Kutz
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:3 Gefahrgutumschließungen; Energiespeicher
3 Gefahrgutumschließungen; Energiespeicher / 3.2 Gefahrguttanks und Unfallmechanik
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Composite material; Cryogenic temperatures; GFRP; LNG; Safety; Tanks
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:ICMEA 2020
Veranstaltungsort:Ho Chi Minh City, Vietnam
Beginndatum der Veranstaltung:06.01.2020
Enddatum der Veranstaltung:08.01.2020
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2020
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.