Real-time distributed temperature gradient sensing using amplitude-based C-OTDR and sensing fiber with inscribed scattering dots

  • We present a technique for distributed temperature gradient sensing in real-time along an optical fiber utilizing simple amplitude-based direct-detection coherent optical time domain reflectometry (C-OTDR) and a special sensing fiber. Our technique enables us to determine phase changes or low-frequency variations of the C-OTDR signal stemming from temperature variations. The distinct feature of the used sensing fiber is its structuring with equidistant strongly scattering dots. Consecutive pairs of these scatterers form the dominant local interferometers, effectively overwriting the otherwise highly nonlinear transfer function of common optical fiber. This enables a quasi-phase-resolved evaluation of perturbation responses originating from temperature changes at sensor positions between the scatterers. Using our method, we show the measurement of a nonlinear temperature transient from a heating process with a maximum temperature gradient of 0.8 °C over 20 s and a total temperatureWe present a technique for distributed temperature gradient sensing in real-time along an optical fiber utilizing simple amplitude-based direct-detection coherent optical time domain reflectometry (C-OTDR) and a special sensing fiber. Our technique enables us to determine phase changes or low-frequency variations of the C-OTDR signal stemming from temperature variations. The distinct feature of the used sensing fiber is its structuring with equidistant strongly scattering dots. Consecutive pairs of these scatterers form the dominant local interferometers, effectively overwriting the otherwise highly nonlinear transfer function of common optical fiber. This enables a quasi-phase-resolved evaluation of perturbation responses originating from temperature changes at sensor positions between the scatterers. Using our method, we show the measurement of a nonlinear temperature transient from a heating process with a maximum temperature gradient of 0.8 °C over 20 s and a total temperature increase of 28.4 °C. This method requires almost no post-processing and can be used for simultaneous distributed vibration sensing (DVS) and quantification of local temperature gradients in a single fiber, e.g., for the use in condition monitoring of infrastructure or industrial installations.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Hicke-Chruscicki-Krebber_EWOFS2019_submission.pdf
    eng
  • Volume_1119901.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Konstantin HickeORCiD, Sebastian Chruscicki, Katerina Krebber
Persönliche Herausgeber*innen:K. Kalli, S. O. O'Keeffe, G. Brambilla
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Proceedings SPIE 11199, Seventh European Workshop on Optical Fibre Sensors
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.6 Faseroptische Sensorik
Herausgeber (Institution):International society for optics and photonics (SPIE)
Verlag:SPIE
Verlagsort:Bellingham, WA, USA
Jahrgang/Band:11199
Erste Seite:1119920-1
Letzte Seite:1119920-4
Freie Schlagwörter:C-OTDR; DVS; Distributed temperature gradient sensing; Distributed vibration sensing; Fibre optic sensors; Power cable monitoring; Structured fiber
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:Seventh European Workshop on Optical Fibre Sensors, 2019
Veranstaltungsort:Limassol, Cyprus
Beginndatum der Veranstaltung:01.10.2019
Enddatum der Veranstaltung:04.10.2019
DOI:10.1117/12.2539925
ISBN:978-1-51063-123-6
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.12.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:27.02.2020
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.