• Treffer 8 von 8
Zurück zur Trefferliste

Phase transition and aggregation behavior of thermoresponsive copolymer poly(acrylamide-co-acrylonitrile)

  • Thermoresponsive polymers have shown great potential in applications such as bioseparation, drug delivery and diagnostic. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range have been reported so far. Moreover, the most studied UCST type polymers namely polybetaines are difficult to use under physiological conditions, which significantly restricts their potential applications. Therefore, UCST polymers with sharp and robust phase transition in physiological conditions (in the presence of salts, etc.) are highly needed in order to extend the range of applications of this class of polymers. A robust UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its thermo-induced aggregation behavior in aqueous media was studied by turbidimetry, dynamic andThermoresponsive polymers have shown great potential in applications such as bioseparation, drug delivery and diagnostic. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range have been reported so far. Moreover, the most studied UCST type polymers namely polybetaines are difficult to use under physiological conditions, which significantly restricts their potential applications. Therefore, UCST polymers with sharp and robust phase transition in physiological conditions (in the presence of salts, etc.) are highly needed in order to extend the range of applications of this class of polymers. A robust UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its thermo-induced aggregation behavior in aqueous media was studied by turbidimetry, dynamic and static light scattering. At temperature below the UCST, the poly(AAm-co-AN) copolymer chains were aggregated together. The aggregate size was found to be larger with increasing AN contents and became smaller upon dilution of the copolymer solutions. While above the UCST, the poly(AAm-co-AN) copolymer chains were expanded and weekly associated in solution. The association between the copolymer chains formed smaller aggregates with increasing the AN contents or the concentration of the solutions. A model is proposed to explain such association-aggregation behavior of the poly(AAm-co-AN) copolymer depending on the AN contents and concentration of the solutions.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • GDCh Makro Halle_Bertin.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Annabelle BertinORCiD
Koautor*innen:Asad Asadujjaman
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Thermoresponsive polymers
Veranstaltung:Biennial meeting GDCh-Division of Macromolecular Chemistry
Veranstaltungsort:Halle, Germany
Beginndatum der Veranstaltung:11.09.2016
Enddatum der Veranstaltung:13.09.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.09.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.