• Treffer 9 von 252
Zurück zur Trefferliste

Semi-automated detection of rain erosion damages on turbine blades with passive thermography and AI image processing

  • The European Green Deal and the global fight against climate change call for more and larger wind turbines in Europe and around the world. To meet the increasing demand for maintenance and inspection, partly autonomous methods of remote inspection are increasingly being developed in addition to industrial climbers performing the inspection. Rotor blades are exposed to extreme weather conditions throughout their lifetime of 20 years, and the leading edge erodes over time. These erosion damages change the aerodynamic features of blades and can cause structural damages. The estimated annual energy production (AEP) losses caused by erosion damages are between 0.5% and 2% per year. The classification of the severity of a rain erosion damage and the quantification of the resulting AEP losses for cost efficient repair and maintenance efforts and improved power production of wind turbines are subject of scientific research. For the inspection of wind turbine rotor blades, passiveThe European Green Deal and the global fight against climate change call for more and larger wind turbines in Europe and around the world. To meet the increasing demand for maintenance and inspection, partly autonomous methods of remote inspection are increasingly being developed in addition to industrial climbers performing the inspection. Rotor blades are exposed to extreme weather conditions throughout their lifetime of 20 years, and the leading edge erodes over time. These erosion damages change the aerodynamic features of blades and can cause structural damages. The estimated annual energy production (AEP) losses caused by erosion damages are between 0.5% and 2% per year. The classification of the severity of a rain erosion damage and the quantification of the resulting AEP losses for cost efficient repair and maintenance efforts and improved power production of wind turbines are subject of scientific research. For the inspection of wind turbine rotor blades, passive thermography is an option that has been used to detect both internal damage [3, 4] as well as erosion on the surface [5, 6]. The advantage is that, given suitable boundary conditions, not only the rain erosion damage itself but also temperature differences caused by the resulting turbulences can be observed on the surface of the blade. Turbulences reduce the efficiency of the rotor blades and result in AEP losses. Optimised thermography inspections can contribute to detect and to evaluate rain erosion damages. The thermal inspection lasts 10 minutes per turbine and is performed while the turbine is in full operation, avoiding downtime and lost opportunities for the turbine owner which are usually caused by conventional blade inspections. The timely inspection procedure is complemented by an automatic data evaluation and results in a considerable number of inspected wind turbines in a certain period of time. A fully convolutional network (FCN) is implemented for the automated evaluation of thermal images. In the presented study, more than 1000 thermographic images of blades were annotated, augmented and used to train and test the FCN. The aim is the precise marking of thermal signatures caused by erosion damage at the leading edge. The area size of the detected temperature difference caused by turbulences was used to identify and categorise damages. Certain strategies were adopted to group small individual indications as one large damage, in order to develop simplification rules based on realistic thermal imaging resolution.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • WESC_AI_imageprocessing.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Michael StammORCiD
Koautor*innen:Somsubhro Chaudhuri, Lars Osterbrink, Thomas Driebe, Daniel Hein
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Non-destructive testing; Thermography; Wind turbine blade
Themenfelder/Aktivitätsfelder der BAM:Energie
Veranstaltung:Wind Energy Science Conference (WESC) 2023
Veranstaltungsort:Glasgow, Scotland
Beginndatum der Veranstaltung:23.05.2023
Enddatum der Veranstaltung:25.05.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:06.10.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.