• Treffer 46 von 78
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-364303

Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

  • Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameterSelf-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:J. Oertel, A. Keller, J. Prinz, B. Schreiber, R. Hübner, J. Kerbusch, Ilko Bald, K. Fahmy
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Scientific Reports
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Nature Publishing Group
Verlagsort:London, UK
Jahrgang/Band:6
Erste Seite:26718-1
Letzte Seite:26718-9
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Infrared spectroscopy; Lipid Nanodiscs; Metal nanoparticles; Surface-enhanced Raman scattering
DOI:10.1038/srep26718
URN:urn:nbn:de:kobv:b43-364303
URL:http://www.nature.com/articles/srep26718
ISSN:2045-2322
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung
Datum der Freischaltung:10.06.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:13.06.2016
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.