• Treffer 7 von 11
Zurück zur Trefferliste

Electrochemistry coupled online to mass spectrometry for prediction of metabolic transformation processes of pesticides

  • Nowadays, electrochemistry coupled online to mass spectrometry (EC-MS) or to liquid chromatography-mass spectrometry (EC-LC-MS) is a technique of interest to investigate metabolic transformation of xenobiotics in living organisms. It enables the production of redox products in an electrochemical cell, the separation by an analytical column and the detection by mass spectrometry online. Furthermore, EC-LC-MS enables to determine short lived transformation products (TPs) and their bioconjugates in a fully automated way. Although the EC-MS selectivity is incomparable to enzymatic reactions, it is advantageous by reducing analysis time and matrix complexity compared to cytochrome based metabolism. However, in the development of EC-MS, most efforts are devoted for prediction of drug metabolism in the human body and there is very limited work on agrochemicals in general. The main objective of this work was to develop an online EC-LC-MS method that could predict the metabolism ofNowadays, electrochemistry coupled online to mass spectrometry (EC-MS) or to liquid chromatography-mass spectrometry (EC-LC-MS) is a technique of interest to investigate metabolic transformation of xenobiotics in living organisms. It enables the production of redox products in an electrochemical cell, the separation by an analytical column and the detection by mass spectrometry online. Furthermore, EC-LC-MS enables to determine short lived transformation products (TPs) and their bioconjugates in a fully automated way. Although the EC-MS selectivity is incomparable to enzymatic reactions, it is advantageous by reducing analysis time and matrix complexity compared to cytochrome based metabolism. However, in the development of EC-MS, most efforts are devoted for prediction of drug metabolism in the human body and there is very limited work on agrochemicals in general. The main objective of this work was to develop an online EC-LC-MS method that could predict the metabolism of fluopyram (fungicide) and chlorpyrifos (insecticide). Oxidation products were produced by using a boron doped diamond electrode and characterized by either online LC-MS or offline LC-MS/MS. After incubation with rat and human liver microsomes, different targeted and suspected metabolites were identified by LC-MS/MS and high resolution-mass spectrometry (HR-MS) and compared with the EC based methods. Additionally, conjugation reactions with a variety of biomolecules such as glucoside and glutathione were investigated by trapping the oxidized species before entering to mass spectrometry. In summary, phase-I metabolism by N-dealkylation, O-dealkylation, P-oxidation, hydroxylation and dearylation and phase-II metabolism by conjugation with glutathione mechanisms were successfully mimicked by EC-LC-MS. Fluopyram is primarily metabolized to 7- and 8-mono- hydroxyl, 7,8-di-hydroxyl and 2-trifluoromethyl benzamide, and chlorpyrifos is metabolized to chlorpyrifos oxon, trichloropyridinol, diethylthiophosphate and diethylphosphate.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 13th LCMSMS_T.F. Mekonnen.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Tessema Fenta Mekonnen
Koautor*innen:Liam Bayrne, Matthias Koch, Ulrich Panne
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Biotransformation; EC-LC-MS; Photodegradation; Transformation products
Veranstaltung:13th Annual LC-MS/MS Workshop on Environmental and Food Safety
Veranstaltungsort:Buffalo, NY, USA
Beginndatum der Veranstaltung:11.06.2017
Enddatum der Veranstaltung:12.06.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.06.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.