• Treffer 4 von 28
Zurück zur Trefferliste

Bright Long-Wavelength Pyrrolic Dyes - Prospects for Applications in Fluorescence Sensing

  • Since more than 20 years, optical spectroscopic techniques, in particular fluorescence-based methods, are on the rise in many different areas of chemical and biochemical analysis, with no end being in sight.1,2 Advances in miniaturization and remote applications on one hand and ground-breaking developments in microscopy and laser-based high-throughput instrumentation on the other hand have fuelled these developments substantially.3,4 At the core of utmost of these applications however is not only the instrument, but a small entity that is able to absorb and emit photons and thus to report on the actual (bio)chemistry that is going on in a particular sample of interest.5,6 Besides intense research on various types of luminescent particles (e.g., quantum dots and carbon dots) and proteins, dye chemistry has thus seen its revival and the number of publications dealing with the design, synthesis and application of new fluorescent dyes as probes, stains, labels or indicators is stillSince more than 20 years, optical spectroscopic techniques, in particular fluorescence-based methods, are on the rise in many different areas of chemical and biochemical analysis, with no end being in sight.1,2 Advances in miniaturization and remote applications on one hand and ground-breaking developments in microscopy and laser-based high-throughput instrumentation on the other hand have fuelled these developments substantially.3,4 At the core of utmost of these applications however is not only the instrument, but a small entity that is able to absorb and emit photons and thus to report on the actual (bio)chemistry that is going on in a particular sample of interest.5,6 Besides intense research on various types of luminescent particles (e.g., quantum dots and carbon dots) and proteins, dye chemistry has thus seen its revival and the number of publications dealing with the design, synthesis and application of new fluorescent dyes as probes, stains, labels or indicators is still continuing to grow. Among the various classes of dyes available as bright fluorophores for a wavelength range that is compatible with many (bio)analytical applications and the respective instrumentation, in particular pyrrolic dyes that do not belong to the classical porphyrins or phthalocyanines have received strong attention recently. Starting perhaps with the revival of the traditional boron-dipyrromethene laser dye ca. 15 years ago,7 these so-called BODIPYs have developed into a colourful spectrum of different derivatives.8 However, the interest in expanding the range of pyrrole-containing π-systems beyond BODIPYs has also constantly increased and has brought about several other pyrrole-based ring systems such as diketopyrrolopyrroles9 or dipyrrolonaphthyridinediones which possess a favourable brightness and other interesting properties. The present contribution will give a critical overview of the field, pinpointing advantages and prospects as well as discussing potential aspects of improvement with an emphasis on the chemical sensing and the longer wavelength range.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ICPP9_Rurack_2016.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Knut RurackORCiD
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Dyes; Fluorescence; NIR; Pyrroles; Sensor
Veranstaltung:Ninth International Conference on Porphyrins and Phthalocyanines
Veranstaltungsort:Nanjing, People's Republic of China
Beginndatum der Veranstaltung:03.07.2016
Enddatum der Veranstaltung:08.07.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.12.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.