• Treffer 152 von 921
Zurück zur Trefferliste

EvalTherm - Detectability of internal defects in wind turbine rotor blades using passive infrared thermography

  • A steady increase of wind energy infrastructure [1] brings along a challenge of maintaining and operating wind turbines (WT) with its multiple components. Inspection of wind turbine rotor blades (WTB) is an important part of maintaining the overall health and safety of a WT. It involves visually or mechanically examining the blades for signs of damage or wear that could affect their performance and structural integrity of the entire WT. A WTB is a complex structure due to its ever-increasing scale (going beyond 100 m for a 16 MW WT [2]) as well as multi-material construction. Passive infrared thermography offers an alternative to contact- or proximity-based inspection techniques currently in use such as visual inspection performed by technical personnel (using a lift or a drone) and involves looking for signs of damage on the surface of the blades, and ultrasonic testing to detect internal defects. In contrast to active thermography, passive thermography uses the sun as source of heat,A steady increase of wind energy infrastructure [1] brings along a challenge of maintaining and operating wind turbines (WT) with its multiple components. Inspection of wind turbine rotor blades (WTB) is an important part of maintaining the overall health and safety of a WT. It involves visually or mechanically examining the blades for signs of damage or wear that could affect their performance and structural integrity of the entire WT. A WTB is a complex structure due to its ever-increasing scale (going beyond 100 m for a 16 MW WT [2]) as well as multi-material construction. Passive infrared thermography offers an alternative to contact- or proximity-based inspection techniques currently in use such as visual inspection performed by technical personnel (using a lift or a drone) and involves looking for signs of damage on the surface of the blades, and ultrasonic testing to detect internal defects. In contrast to active thermography, passive thermography uses the sun as source of heat, instead of conventional heat lamps, flash, or laser. An inspection technique to (semi-autonomously) inspect the WTBs of an operating WT from the ground has been developed [3]. Given the optimum thermal contrast (weather conditions for field measurements), external as well as internal features of the WTB can be visualised with appropriate post-processing. The work presented here is part of an ongoing multi-partner project titled “EvalTherm”: the evaluation of passive thermography as a non-destructive inspection tool of WTBs in operation. In this work, artificial defects representative of realistic defects in glass fibre reinforced plastic (GFRP) WTBs are introduced in out-of-service WTB pieces. These are scanned using X-ray computed tomography to obtain a three-dimensional reconstruction to be used as input for finite-element based thermal simulation using COMSOL Multiphysics. The simulation data is compared with infrared thermal inspection of the same WTB section, in order to compare the effect of thermal contrast caused in certain weather conditions. In addition, the influence of defect characteristics such as defect size, morphology, and location on detectability is investigated. Validated simulation models are used to predict thermal signatures of defects along with the optimal thermal contrast. Such simulation models in combination with weather forecast data can assist operators of wind turbine infrastructure to plan passive thermography inspection without the need of dangerous inspection procedures and associated shutdown of energy production.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 20230524_CHAUDHURI_WESC_PRES_FINAL.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Somsubhro ChaudhuriORCiD
Koautor*innen:Michael Stamm, Rainer Krankenhagen
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Thermografie; Windenergie anlage rotorblätte
FEM; Thermography; Wind turbine rotor blades
Themenfelder/Aktivitätsfelder der BAM:Energie
Veranstaltung:Wind Energy Science Conference (WESC) 2023
Veranstaltungsort:Glasgow, Scotland
Beginndatum der Veranstaltung:23.05.2023
Enddatum der Veranstaltung:25.05.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.09.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.