## 90C90 Applications of mathematical programming

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (37)
- Doctoral Thesis (5)
- Master's Thesis (3)

#### Keywords

#### Institute

In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs.
This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements.

Exploiting structure in non-convex quadratic optimization and gas network planning under uncertainty
(2017)

The amazing success of computational mathematical optimization over
the last decades has been driven more by insights into mathematical
structures than by the advance of computing technology. In this vein,
we address applications, where nonconvexity in the model and
uncertainty in the data pose principal difficulties.
The first part of the thesis deals with non-convex quadratic programs.
Branch&Bound methods for this problem class depend on tight
relaxations. We contribute in several ways: First, we establish a new
way to handle missing linearization variables in the well-known
Reformulation-Linearization-Technique (RLT). This is implemented
into the commercial software CPLEX. Second, we study the optimization
of a quadratic objective over the standard simplex or a knapsack
constraint. These basic structures appear as part of many complex
models. Exploiting connections to the maximum clique problem and RLT,
we derive new valid inequalities. Using exact and heuristic separation
methods, we demonstrate the impact of the new inequalities on the
relaxation and the global optimization of these problems. Third, we
strengthen the state-of-the-art relaxation for the pooling problem, a
well-known non-convex quadratic problem, which is, for example,
relevant in the petrochemical industry. We propose a novel relaxation
that captures the essential non-convex structure of the problem but is
small enough for an in-depth study. We provide a complete inner
description in terms of the extreme points as well as an outer
description in terms of inequalities defining its convex hull (which
is not a polyhedron). We show that the resulting valid convex
inequalities significantly strengthen the standard relaxation of the
pooling problem.
The second part of this thesis focuses on a common challenge in real
world applications, namely, the uncertainty entailed in the input
data.
We study the extension of a gas transport network, e.g., from our
project partner Open Grid Europe GmbH.
For a single scenario this maps to a challenging non-convex MINLP.
As the future transport patterns are highly uncertain, we propose a
robust model to best prepare the network operator for an array of
scenarios.
We develop a custom decomposition approach that makes use of the
hierarchical structure of network extensions and the loose coupling
between the scenarios.
The algorithm used the single-scenario problem as black-box subproblem
allowing the generalization of our approach to problems with the same
structure.
The scenario-expanded version of this problem is out of reach for
today's general-purpose MINLP solvers.
Yet our approach provides primal and dual bounds for instances with up
to 256 scenarios and solves many of them to optimality.
Extensive computational studies show the impact of our work.

The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.

Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem.

The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators.
While previously network operator and gas vendor where united, they were forced to split up into independent companies.
The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way.
We show that these new paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed.
With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.

This paper is concerned with optimal operation of pressurized water supply networks at a fixed point in time. We use a mixed-integer nonlinear programming (MINLP) model incorporating both the nonlinear physical laws and the discrete decisions such as switching pumps on and off. We demonstrate that for instances from our industry partner, these stationary models can be solved to ε-global optimality within small running times using problem-specific presolving and state-of-the-art MINLP algorithms.
In our modeling, we emphasize the importance of distinguishing between what we call real and imaginary flow, i.e., taking into account that the law of Darcy-Weisbach correlates pressure difference and flow along a pipe if and only if water is available at the high pressure end of a pipe. Our modeling solution extends to the dynamic operative planning problem.

The Steiner tree packing problem (STPP) in graphs is a long studied
problem in combinatorial optimization. In contrast to many other problems,
where there have been tremendous advances in practical problem
solving, STPP remains very difficult. Most heuristics schemes are ineffective
and even finding feasible solutions is already NP-hard. What makes
this problem special is that in order to reach the overall optimal solution
non-optimal solutions to the underlying NP-hard Steiner tree problems
must be used. Any non-global approach to the STPP is likely to fail.
Integer programming is currently the best approach for computing optimal
solutions. In this paper we review some “classical” STPP instances
which model the underlying real world application only in a reduced form.
Through improved modelling, including some new cutting planes, and by
emplyoing recent advances in solver technology we are for the first time
able to solve those instances in the original 3D grid graphs to optimimality.

The steel mill slab design problem from the CSPLIB is a combinatorial
optimization problem motivated by an application of the steel industry. It
has been widely studied in the constraint programming community. Several
methods were proposed to solve this problem. A steel mill slab library was
created which contains 380 instances. A closely related binpacking problem
called the multiple knapsack problem with color constraints, originated
from the same industrial problem, was discussed in the integer programming
community. In particular, a simple integer program for this problem has
been given by Forrest et al. The aim of this paper is to bring these
different studies together. Moreover, we adapt the model of Forrest et
al. for the steel mill slab design problem. Using this model and a
state-of-the-art integer program solver all instances of the steel mill
slab library can be solved efficiently to optimality. We improved,
thereby, the solution values of 76 instances compared to previous results.
Finally, we consider a recently introduced variant of the steel mill slab
design problem, where within all solutions which minimize the leftover one
is interested in a solution which requires a minimum number of slabs. For
that variant we introduce two approaches and solve all instances of the
steel mill slab library with this slightly changed objective function to
optimality.

MIPLIB 2010
(2010)

This paper reports on the fifth version of the Mixed Integer Programming Library.
The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups.
This includes the main benchmark test set of 87 instances, which
are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved.
For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to
test the accuracy of provided solutions using exact arithmetic.