## 90C26 Nonconvex programming, global optimization

### Refine

#### Document Type

- ZIB-Report (16) (remove)

#### Keywords

- nonconvex (3)
- Large Neighborhood Search (2)
- MINLP (2)
- Pooling Problem (2)
- Primal Heuristic (2)
- Relaxation (2)
- global optimization (2)
- mixed-integer quadratically constrained programming (2)
- Extreme Points (1)
- Feasibility Pump (1)

#### Institute

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which products are mixed in intermediate pools in order to meet quality targets at their destinations. In this technical report, we characterize the extreme points of the convex hull of our non-convex set, and show that they are not finite, i.e., the convex hull is not polyhedral. This analysis was used to derive valid nonlinear convex inequalities and show that, for a specific case, they characterize the convex hull of our set. The new valid inequalities and computational results are presented in ZIB Report 18-12.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by considering a single product, a single attibute, and a single pool. The convex hull of the resulting nonconvex set is not polyhedral. We derive valid linear and convex nonlinear inequalities for the convex hull, and demonstrate that different subsets of these inequalities define the convex hull of the nonconvex set in three cases determined by the parameters of the set. Computational results on literature instances and newly created larger test instances demonstrate that the inequalities can significantly strengthen the convex relaxation of the pq-formulation of the pooling problem, which is the relaxation known to have the strongest bound.

The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.

This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality.
SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set.

Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment shows that primal heuristics play a key role in achieving feasibility and finding good primal bounds within a global MINLP solver.

Undercover Branching
(2013)

In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred.
Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule.
We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

Optimization-based bound tightening (OBBT) is a domain reduction technique commonly used in nonconvex mixed-integer nonlinear programming that solves a sequence of auxiliary linear programs. Each variable is minimized and maximized to obtain the tightest bounds valid for a global linear relaxation. This paper shows how the dual solutions of the auxiliary linear programs can be used to learn what we call Lagrangian variable bound constraints. These are linear inequalities that explain OBBT's domain reductions in terms of the bounds on other variables and the objective value of the incumbent solution. Within a spatial branch-and-bound algorithm, they can be learnt a priori (during OBBT at the root node) and propagated within the search tree at very low computational cost. Experiments with an implementation inside the MINLP solver SCIP show that this reduces the number of branch-and-bound nodes and speeds up solution times.

This is a technical report for the SCIP constraint handler cons_bivariate. We describe a cut-generation algorithm for a class of bivariate twice continuously differentiable functions with
fixed convexity behavior over a box.
Computational results comparing our cut-generation algorithms with
state-of-the-art global
optimization software on a series of randomly generated test instances are reported and discussed.

This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.