Regularity patterns for rolling stock rotation optimization

  • The operation of railways gives rise to many fundamental optimization problems. One of these problems is to cover a given set of timetabled trips by a set of rolling stock rotations. This is well known as the Rolling Stock Rotation Problem (RSRP). Most approaches in the literature focus primarily on modeling and minimizing the operational costs. However, an essential aspect for the industrial application is mostly neglected. As the RSRP follows timetabling and line planning, where periodicity is a highly desired property, it is also desired to carry over periodic structures to rolling stock rotations and following operations. We call this complex requirement regularity. Regularity turns out to be of essential interest, especially in the industrial scenarios that we tackle in cooperation with DB Fernverkehr AG. Moreover, regularity in the context of the RSRP has not been investigated thoroughly in the literature so far. We introduce three regularity patterns to tackle this requirement, namely regular trips, regular turns, and regular handouts. We present a two-stage approach in order to optimize all three regularity patterns. At first, we integrate regularity patterns into an integer programming approach for the minimization of the operational cost of rolling stock rotations. Afterwards regular handouts are computed. These handouts present the rotations of the first stage in the most regular way. Our computational results (i.e., rolling stock rotations evaluated by planners of DB Fernverkehr AG) show that the three regularity patterns and our concept are a valuable and, moreover, an essential contribution to rolling stock rotation optimization.

Export metadata

  • Export Bibtex

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Boris Grimm, Ralf Borndörfer, Markus Reuther, Thomas Schlechte, Stanley Schade
Document Type:In Proceedings
Parent Title (English):8th International Conference on Applied Operational Research, Proceedings
Volume:8
First Page:28
Last Page:32
Series:Lecture Notes in Management Science
Year of first publication:2016

$Rev: 13581 $