Refine
Year of publication
Document Type
- ZIB-Report (15)
- In Proceedings (14)
- Article (8)
- Book (1)
- Book chapter (1)
- Doctoral Thesis (1)
Language
- English (40)
Keywords
- column generation (3)
- rapid branching (2)
- Mixed Integer Programming (1)
- Railway Optimization (1)
- Rolling Stock Planning, Hypergraph Modeling, Integer Programming, Column Generation, Rapid Branching (1)
- Rolling Stock Rostering (1)
- capacity optimization (1)
- coarse-to-fine approach (1)
- cycle embedding problem (1)
- hypergraphs (1)
Institute
This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art.
There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover:
Simulation
Capacity Assessment
Network Design
Train Routing
Robust Timetabling
Event Scheduling
Track Allocation
Blocking
Shunting
Rolling Stock
Crew Scheduling
Dispatching
Delay Propagation
We propose a model for the integrated optimization of vehicle
rotations and vehicle compositions in long distance railway passenger
transport. The main contribution of the paper is a hypergraph model
that is able to handle the challenging technical requirements as
well as very general stipulations with respect to the ``regularity''
of a schedule. The hypergraph model directly generalizes network
flow models, replacing arcs with hyperarcs. Although NP-hard in
general, the model is computationally well-behaved in practice. High
quality solutions can be produced in reasonable time using high
performance Integer Programming techniques, in particular, column
generation and rapid branching. We show that, in this way,
large-scale real world instances of our cooperation partner DB
Fernverkehr can be solved.
Rapid Branching
(2012)
We propose rapid branching (RB) as a general branch-and-bound heuristic
for solving large scale optimization problems in traffic and transport.
The key idea is to combine a special branching rule and a greedy node selection
strategy in order to produce solutions of controlled quality rapidly
and efficiently. We report on three successful applications of the method
for integrated vehicle and crew scheduling, railway track allocation, and
railway vehicle rotation planning.
This paper provides a generic formulation for rolling stock planning
problems in the context of intercity passenger traffic. The main contributions
are a graph theoretical model and a Mixed-Integer-Programming
formulation that integrate all main requirements of the considered
Vehicle-Rotation-Planning problem (VRPP). We show that it is
possible to solve this model for real-world instances provided by our
industrial partner DB Fernverkehr AG using modern algorithms and
computers.
This paper provides a highly integrated solution approach for rolling stock
planning problems in the context of intercity passenger traffic. The main
contributions are a generic hypergraph based mixed integer programming
model and an integrated algorithm for the considered rolling stock rotation
planning problem. The new developed approach is able to handle a very large
set of industrial railway requirements, such as vehicle composition,
maintenance constraints, infrastructure capacity, and regularity aspects.
By the integration of this large bundle of technical railway aspects, we show
that our approach has the power to produce implementable rolling stock
rotations for our industrial cooperation partner DB Fernverkehr.
This is the first time that the rolling stock rotations at DB Fernverkehr
could be optimized by an automated system utilizing advanced mathematical
programming techniques.
The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, i.e., vehicle composition, maintenance constraints, and regularity aspects.
In industrial applications existing schedules often have to be re-optimized to integrate timetable changes or construction sites.
We present an integrated modeling and algorithmic approach for this task as well as computational results for industrial problem instances of DB Fernverkehr AG.
The Cycle Embedding Problem
(2014)
Given two hypergraphs, representing a fine and a coarse "layer", and a cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP) asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard for general hypergraphs, but it can be solved in polynomial time for graphs. We propose an integer rogramming formulation for the CEP that provides a complete escription of the CEP polytope for the graphical case. The CEP comes up in railway vehicle rotation scheduling. We present computational results for problem instances of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning approach.
The resource constrained assignment problem (RCAP) is to find a minimal cost cycle partition in a directed graph such that a resource constraint is fulfilled. The RCAP has its roots in an application that deals with the covering of a railway timetable by rolling stock vehicles. Here, the resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP generalizes several variants of vehicle routing problems. We contribute a local search algorithm for this problem that is derived from an exact algorithm which is similar to the Hungarian method for the standard assignment problem. Our algorithm can be summarized as a k-OPT heuristic, exchanging k arcs of an alternating cycle of the incumbent solution in each improvement step. The alternating cycles are found by dual arguments from linear programming. We present computational results for instances from our railway application at Deutsche Bahn Fernverkehr AG as well as for instances of the vehicle routing problem from the literature.
The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an
opportunity for high-achieving graduate-level students to work in teams on a
real-world research project proposed by a sponsor from industry or the public
sector. Each G-RIPS team consists of four international students (two from
the US and two from European universities), an academic mentor, and an industrial sponsor.
This is the report of the Rail-Lab project on the definition and integration of
robustness aspects into optimizing rolling stock schedules. In general, there is
a trade-off for complex systems between robustness and efficiency. The ambitious
goal was to explore this trade-off by implementing numerical simulations and
developing analytic models.
In rolling stock planning a very large set of industrial railway requirements,
such as vehicle composition, maintenance constraints, infrastructure capacity,
and regularity aspects, have to be considered in an integrated model. General
hypergraphs provide the modeling power to tackle those requirements.
Furthermore, integer programming approaches are able to produce high quality
solutions for the deterministic problem.
When stochastic time delays are considered, the mathematical programming problem
is much more complex and presents additional challenges. Thus, we started with a
basic variant of the deterministic case, i.e., we are only considering
hypergraphs representing vehicle composition and regularity.
We transfered solution approaches for robust optimization
from the airline industry to the setting of railways and attained a
reasonable measure of robustness. Finally, we present and discuss different
methods to optimize this robustness measure.
This chapter shows a successful approach how to model and optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical optimization problem is described in detail and solved by RotOR, i.e., a complex optimization algorithm based on linear programming and combinatorial methods. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. We focus on main modeling and solving components, i.e. a hypergraph model and
a coarse-to-fine column generation approach. Finally, the chapter concludes with a complex industrial re-optimization application showing the effectiveness of the approach for real world challenges.