### Refine

#### Document Type

- ZIB-Report (14)
- In Proceedings (12)
- Article (6)
- Book (1)
- Book chapter (1)
- Doctoral Thesis (1)

#### Keywords

- column generation (3)
- rapid branching (2)
- Mixed Integer Programming (1)
- Railway Optimization (1)
- Rolling Stock Planning, Hypergraph Modeling, Integer Programming, Column Generation, Rapid Branching (1)
- Rolling Stock Rostering (1)
- capacity optimization (1)
- coarse-to-fine approach (1)
- cycle embedding problem (1)
- hypergraphs (1)

#### Institute

This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art.
There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover:
Simulation
Capacity Assessment
Network Design
Train Routing
Robust Timetabling
Event Scheduling
Track Allocation
Blocking
Shunting
Rolling Stock
Crew Scheduling
Dispatching
Delay Propagation

The resource constrained assignment problem (RCAP) is to find a minimal cost partition of the nodes of a directed graph into cycles such that a resource constraint is fulfilled. The RCAP has its roots in rolling stock rotation optimization where a railway timetable has to be covered by rotations, i.e., cycles. In that context, the resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP generalizes variants of the vehicle routing problem (VRP). The paper contributes an exact branch and bound algorithm for the RCAP and, primarily, a straightforward algorithmic concept that we call regional search (RS). As a symbiosis of a local and a global search algorithm, the result of an RS is a local optimum for a combinatorial optimization problem. In addition, the local optimum must be globally optimal as well if an instance of a problem relaxation is computed. In order to present the idea for a standardized setup we introduce an RS for binary programs. But the proper contribution of the paper is an RS that turns the Hungarian method into a powerful heuristic for the resource constrained assignment problem by utilizing the exact branch and bound. We present computational results for RCAP instances from an industrial cooperation with Deutsche Bahn Fernverkehr AG as well as for VRP instances from the literature. The results show that our RS provides a solution quality of 1.4 % average gap w.r.t. the best known solutions of a large test set. In addition, our branch and bound algorithm can solve many RCAP instances to proven optimality, e.g., almost all asymmetric traveling salesman and capacitated vehicle routing problems that we consider.

Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.

Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.

This paper proposes a highly integrated solution approach for rolling stock planning problems in the context of long distance passenger traffic between cities. The main contributions are a generic hypergraph-based mixed-integer programming model for the considered rolling stock rotation problem and an integrated algorithm for its solution. The newly developed algorithm is able to handle a large spectrum of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacities, and regularity aspects. We show that our approach has the power to produce rolling stock rotations that can be implemented in practice. In this way, the rolling stock rotations at the largest German long distance operator Deutsche Bahn Fernverkehr AG could be optimized by an automated system utilizing advanced mathematical programming techniques.

Rolling stock, i.e., rail vehicles, are among the most expensive and limited assets of a railway company. They must be used efficiently applying optimization techniques. One important aspect is re-optimization, which is the topic that we consider in this paper. We propose a template concept that allows to compute cost minimal rolling stock rotations under a large variety of re-optimization requirements. Two examples, involving a connection template and a rotation template, are discussed. An implementation within the rolling stock rotation optimizer rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe, are presented.

We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved.

This paper provides a generic formulation for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a graph theoretical model and a Mixed-Integer-Programming formulation that integrate all main requirements of the considered Vehicle-Rotation-Planning problem (VRPP). We show that it is possible to solve this model for real-world instances provided by our industrial partner DB Fernverkehr AG using modern algorithms and computers.

The operation of railways gives rise to many fundamental optimization problems. One of these problems is to cover a given set of timetabled trips by a set of rolling stock rotations. This is well known as the Rolling Stock Rotation Problem (RSRP). Most approaches in the literature focus primarily on modeling and minimizing the operational costs. However, an essential aspect for the industrial application is mostly neglected. As the RSRP follows timetabling and line planning, where periodicity is a highly desired property, it is also desired to carry over periodic structures to rolling stock rotations and following operations. We call this complex requirement regularity. Regularity turns out to be of essential interest, especially in the industrial scenarios that we tackle in cooperation with DB Fernverkehr AG. Moreover, regularity in the context of the RSRP has not been investigated thoroughly in the literature so far. We introduce three regularity patterns to tackle this requirement, namely regular trips, regular turns, and regular handouts. We present a two-stage approach in order to optimize all three regularity patterns. At first, we integrate regularity patterns into an integer programming approach for the minimization of the operational cost of rolling stock rotations. Afterwards regular handouts are computed. These handouts present the rotations of the first stage in the most regular way. Our computational results (i.e., rolling stock rotations evaluated by planners of DB Fernverkehr AG) show that the three regularity patterns and our concept are a valuable and, moreover, an essential contribution to rolling stock rotation optimization.

A railway operator creates (rolling stock) rotations in order to have a precise master plan for the
operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply
traverses a set of operational days while covering trips of the timetable. As it is well known,
the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging
and still a topical research subject. Nevertheless, we study a completely different but strongly
related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce
a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In
our industrial application at DB Fernverkehr AG, the handout is exactly as important as the
rotation itself. Moreover, it turns out that also other European railway operators use exactly the
same methodology (but not terminology). Since a rotation can have many handouts of different
quality, we show how to compute optimal ones through an integer program (IP) by standard
software. In addition, a construction as well as an improvement heuristic are presented. Our
computational results show that the heuristics are a very reliable standalone approach to quickly
find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a
computational comparison to the IP approach.