### Refine

#### Year of publication

#### Document Type

- ZIB-Report (52)
- In Proceedings (38)
- Article (21)
- Book chapter (3)
- Book (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Language

- English (117)

#### Keywords

- column generation (4)
- integer programming (4)
- network aggregation (4)
- rapid branching (4)
- Railway Track Allocation (3)
- railway track allocation (3)
- Column Generation (2)
- Fahrplanung (2)
- Netzwerkaggregation (2)
- Optimization (2)

#### Institute

In this paper a bottom-up approach of automatic simplification of a railway network is presented. Starting from a very detailed, microscopic level, as it is used in railway simulation, the network is transformed by an algorithm to a less detailed level (macroscopic network), that is sufficient for long-term planning and optimization. In addition running and headway times are rounded to a pre-chosen time discretization by a special cumulative method, which we will present and analyse in this paper. After the transformation we fill the network with given train requests to compute an optimal slot allocation. Then the optimized schedule is re-transformed into the microscopic level and can be simulated without any conflicts occuring between the slots. The algorithm is used to transform the network of the very dense Simplon corridor between Swiss and Italy. With our aggregation it is possible for the first time to generate a profit maximal and conflict free timetable for the corridor across a day by a simultaneously optimization run.

This paper presents a case study on a railway timetable optimization for the very dense Simplon corridor, a major railway connection in the Alps between Switzerland and Italy. Starting from a detailed microscopic network as it is used in railway simulation, the data is transformed by an automatic procedure to a less detailed macroscopic network, that is sufficient for the purpose of capacity planning and amenable to state-of-the-art integer programming optimization methods. In this way, the macroscopic railway network is saturated with trains. Finally, the corresponding timetable is re-transformed to the microscopic level in such a way that it can be operated without any conflicts among the slots. Using this integer programming based micro-macro aggregation-disaggregation approach, it becomes for the first time possible to generate a profit maximal and conflict free timetable for the complete Simplon corridor over an entire day by a simultaneous optimization of all trains requests. This also allows to to undertake a sensitivity analysis of various problem parameters.

In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20% in just a few minutes.

The airline crew scheduling problem deals with the construction of crew rotations in order to cover the flights of a given schedule at minimum cost. The problem involves complex rules for the legality and costs of individual pairings and base constraints for the availability of crews at home bases. A typical instance considers a planning horizon of one month and several thousand flights. We propose a column generation approach for solving airline crew scheduling problems that is based on a set partitioning model. We discuss algorithmic aspects such as the use of bundle techniques for the fast, approximate solution of linear programs, a pairing generator that combines Lagrangean shortest path and callback techniques, and a novel rapid branching'' IP heuristic. Computational results for a number of industrial instances are reported. Our approach has been implemented within the commercial crew scheduling system NetLine/Crew of Lufthansa Systems Berlin GmbH.

We present an approach to implement an auction of railway slots. Railway network, train driving characteristics, and safety requirements are described by a simplified, but still complex macroscopic model. In this environment, slots are modelled as combinations of scheduled track segments. The auction design builds on the iterative combinatorial auction. However, combinatorial bids are restricted to some types of slot bundles that realize positive synergies between slots. We present a bidding language that allows bidding for these slot bundles. An integer programming approach is proposed to solve the winner determination problem of our auction. Computational results for auction simulations in the Hannover-Fulda-Kassel area of the German railway network give evidence that auction approaches can induce a more efficient use of railway capacity.

The steel mill slab design problem from the CSPLib is a binpacking problem that is motivated by an application of the steel industry and that has been widely studied in the constraint programming community. Recently, several people proposed new models and methods to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called multiple knapsack problem with color constraints, originated from the same industrial problem, were discussed in the integer programming community. In particular, a simple integer programming for this problem has been given by Forrest et al. [3]. The aim of this paper is to bring these different studies together. Moreover, we adopt the model of [3] for the steel mill slab problem. Using a state of the art integer program solver, this model is capable to solve all instances of the steel mill slab library, mostly in less than one second, to optimality. We improved, thereby, the solution value of 76 instances.

We introduce (TTPlib), a data library for train timetabling problems that can be accessed at http://ttplib.zib.de. In version 1.0, the library contains data related to 50 scenarios. Most instances result from the combination of macroscopic railway networks and several train request sets for the German long distance area containing Hannover, Kassel and Fulda, short denoted by Ha-Ka-Fu. In this paper, we introduce the data concepts of TTPlib, describe the scenarios included in the library and provide a free visualization tool TraVis.

Technical restrictions and challenging details let railway traffic become one of the most complex transportation systems. Routing trains in a conflict-free way through a track network is one of the basic scheduling problems for any railway company. This article focuses on a robust extension of this problem, also known as train timetabling problem (TTP), which consists in finding a schedule, a conflict free set of train routes, of maximum value for a given railway network. However, timetables are not only required to be profitable. Railway companies are also interested in reliable and robust solutions. Intuitively, we expect a more robust track allocation to be one where disruptions arising from delays are less likely to be propagated causing delays of subsequent trains. This trade-off between an efficient use of railway infrastructure and the prospects of recovery leads us to a bi-criteria optimization approach. On the one hand we want to maximize the profit of a schedule, that is more or less to maximize the number of feasible routed trains. On the other hand if two trains are scheduled as tight as possible after each other it is clear that a delay of the first one always affects the subsequent train. We present extensions of the integer programming formulation in [BorndoerferSchlechte2007] for solving (TTP). These models can incorporate both aspects, because of the additional track configuration variables. We discuss how these variables can directly be used to measure a certain type of robustness of a timetable. For these models which can be solved by column generation techniques, we propose so-called scalarization techniques, see [Ehrgott2005], to determine efficient solutions. Here, an efficient solution is one which does not allow any improvement in profit and robustness at the same time. We prove that the LP-relaxation of the (TTP) including an additional $\epsilon$-constraint remains solvable in polynomial time. Finally, we present some preliminary results on macroscopic real-world data of a part of the German long distance railway network.