Refine
Year of publication
Document Type
- In Proceedings (13)
- ZIB-Report (11)
- Article (4)
- Master's Thesis (1)
- Other (1)
Language
- English (30)
Keywords
The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.
Rolling stock, i.e., rail vehicles, are among the most expensive and limited assets of a railway company. They must be used efficiently applying optimization techniques. One important aspect is re-optimization, which is the topic that we consider in this paper. We propose a template concept that allows to compute cost minimal rolling stock rotations under a large variety of re-optimization requirements. Two examples, involving a connection template and a rotation template, are discussed. An implementation within the rolling stock rotation optimizer rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe, are presented.
The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation.
We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.
The operation of railways gives rise to many fundamental optimization problems. One of these problems is to cover a given set of timetabled trips by a set of rolling stock rotations. This is well known as the Rolling Stock Rotation Problem (RSRP). Most approaches in the literature focus primarily on modeling and minimizing the operational costs. However, an essential aspect for the industrial application is mostly neglected. As the RSRP follows timetabling and line planning, where periodicity is a highly desired property, it is also desired to carry over periodic structures to rolling stock rotations and following operations. We call this complex requirement regularity. Regularity turns out to be of essential interest, especially in the industrial scenarios that we tackle in cooperation with DB Fernverkehr AG. Moreover, regularity in the context of the RSRP has not been investigated thoroughly in the literature so far. We introduce three regularity patterns to tackle this requirement, namely regular trips, regular turns, and regular handouts. We present a two-stage approach in order to optimize all three regularity patterns. At first, we integrate regularity patterns into an integer programming approach for the minimization of the operational cost of rolling stock rotations. Afterwards regular handouts are computed. These handouts present the rotations of the first stage in the most regular way. Our computational results (i.e., rolling stock rotations evaluated by planners of DB Fernverkehr AG) show that the three regularity patterns and our concept are a valuable and, moreover, an essential contribution to rolling stock rotation optimization.
We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.
The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.
The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the
timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.
We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.
Rolling stock optimization is a task that naturally arises by operating a railway system.
It could be seen with different level of details. From a strategic perspective to have a rough plan which types of fleets to be bought to a more operational perspective to decide which coaches have to be maintained first. This paper presents a new approach to deal with rolling stock optimisation in case of a (long term) strike.
Instead of constructing a completely new timetable for the strike period, we propose a mixed integer programming model that is able to choose appropriate trips from a given timetable to construct efficient tours of railway vehicles covering an optimized subset of trips, in terms of deadhead kilometers and importance of the trips. The decision which trip is preferred over the other is made by a simple evaluation method that is deduced from the network and trip defining data.