### Refine

#### Document Type

- In Proceedings (11)
- ZIB-Report (10)
- Article (2)
- Master's Thesis (1)
- Other (1)

#### Language

- English (25)

#### Keywords

#### Institute

The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an
opportunity for high-achieving graduate-level students to work in teams on a
real-world research project proposed by a sponsor from industry or the public
sector. Each G-RIPS team consists of four international students (two from
the US and two from European universities), an academic mentor, and an industrial sponsor.
This is the report of the Rail-Lab project on the definition and integration of
robustness aspects into optimizing rolling stock schedules. In general, there is
a trade-off for complex systems between robustness and efficiency. The ambitious
goal was to explore this trade-off by implementing numerical simulations and
developing analytic models.
In rolling stock planning a very large set of industrial railway requirements,
such as vehicle composition, maintenance constraints, infrastructure capacity,
and regularity aspects, have to be considered in an integrated model. General
hypergraphs provide the modeling power to tackle those requirements.
Furthermore, integer programming approaches are able to produce high quality
solutions for the deterministic problem.
When stochastic time delays are considered, the mathematical programming problem
is much more complex and presents additional challenges. Thus, we started with a
basic variant of the deterministic case, i.e., we are only considering
hypergraphs representing vehicle composition and regularity.
We transfered solution approaches for robust optimization
from the airline industry to the setting of railways and attained a
reasonable measure of robustness. Finally, we present and discuss different
methods to optimize this robustness measure.

The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation.
We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.

The operation of railways gives rise to many fundamental optimization problems. One of these problems is to cover a given set of timetabled trips by a set of rolling stock rotations. This is well known as the Rolling Stock Rotation Problem (RSRP). Most approaches in the literature focus primarily on modeling and minimizing the operational costs. However, an essential aspect for the industrial application is mostly neglected. As the RSRP follows timetabling and line planning, where periodicity is a highly desired property, it is also desired to carry over periodic structures to rolling stock rotations and following operations. We call this complex requirement regularity. Regularity turns out to be of essential interest, especially in the industrial scenarios that we tackle in cooperation with DB Fernverkehr AG. Moreover, regularity in the context of the RSRP has not been investigated thoroughly in the literature so far. We introduce three regularity patterns to tackle this requirement, namely regular trips, regular turns, and regular handouts. We present a two-stage approach in order to optimize all three regularity patterns. At first, we integrate regularity patterns into an integer programming approach for the minimization of the operational cost of rolling stock rotations. Afterwards regular handouts are computed. These handouts present the rotations of the first stage in the most regular way. Our computational results (i.e., rolling stock rotations evaluated by planners of DB Fernverkehr AG) show that the three regularity patterns and our concept are a valuable and, moreover, an essential contribution to rolling stock rotation optimization.

A railway operator creates (rolling stock) rotations in order to have a precise master plan for the
operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply
traverses a set of operational days while covering trips of the timetable. As it is well known,
the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging
and still a topical research subject. Nevertheless, we study a completely different but strongly
related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce
a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In
our industrial application at DB Fernverkehr AG, the handout is exactly as important as the
rotation itself. Moreover, it turns out that also other European railway operators use exactly the
same methodology (but not terminology). Since a rotation can have many handouts of different
quality, we show how to compute optimal ones through an integer program (IP) by standard
software. In addition, a construction as well as an improvement heuristic are presented. Our
computational results show that the heuristics are a very reliable standalone approach to quickly
find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a
computational comparison to the IP approach.

Rolling stock, i.e., rail vehicles, are among the most expensive and limited assets of a railway company. They must be used efficiently applying optimization techniques. One important aspect is re-optimization, which is the topic that we consider in this paper. We propose a template concept that allows to compute cost minimal rolling stock rotations under a large variety of re-optimization requirements. Two examples, involving a connection template and a rotation template, are discussed. An implementation within the rolling stock rotation optimizer rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe, are presented.

Rolling stock, i.e., the set of railway vehicles, is among the most
expensive and limited assets of a railway company and must be used
efficiently. We consider in this paper the re-optimization
problem to recover from unforeseen disruptions. We propose a
template concept that allows to recover cost minimal rolling
stock rotations from reference rotations under a large variety of
operational requirements. To this end, connection templates as
well as rotation templates are introduced and their
application within a rolling stock rotation planning model is
discussed. We present an implementation within the rolling stock rotation
optimization framework rotor and computational results for
scenarios provided by DB Fernverkehr AG, one of the
leading railway operators in Europe.

The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.

We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.