Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia

  • This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator.
Metadaten
Author:Peter Deuflhard, Anton Schiela, Martin WeiserORCiD
Document Type:Article
Parent Title (English):Acta Numerica
Volume:21
First Page:307
Last Page:378
Year of first publication:2012
Preprint:urn:nbn:de:0297-zib-14204