• Deutsch
Login

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Deuflhard, Peter (341)
  • Hege, Hans-Christian (55)
  • Wust, Peter (46)
  • Felix, Roland (40)
  • Zachow, Stefan (33)
  • Seebass, Martin (28)
  • Weiser, Martin (28)
  • Stalling, Detlev (25)
  • Schütte, Christof (23)
  • Nadobny, Johanna (20)
+ more

Year of publication

  • 2020 (1)
  • 2018 (2)
  • 2017 (1)
  • 2015 (4)
  • 2014 (5)
  • 2013 (5)
  • 2012 (4)
  • 2011 (4)
  • 2010 (6)
  • 2009 (3)
+ more

Document Type

  • ZIB-Report (98)
  • Article (92)
  • In Proceedings (88)
  • Book chapter (25)
  • Book (14)
  • Other (12)
  • In Collection (8)
  • Doctoral Thesis (3)
  • Report (1)

Language

  • English (324)
  • German (17)

Has Fulltext

  • no (243)
  • yes (98)

Is part of the Bibliography

  • no (341)

Keywords

  • hyperthermia (5)
  • cluster analysis (4)
  • metastability (3)
  • Abstracts (2)
  • Dynamical contact problems (2)
  • Hamiltonian dynamics (2)
  • Markov chain (2)
  • Maxwell's equations (2)
  • Newmark method (2)
  • Self-Organizing Maps (2)
+ more

Institute

  • Numerical Mathematics (167)
  • ZIB Allgemein (76)
  • Visual Data Analysis (49)
  • Therapy Planning (48)
  • Computational Medicine (40)
  • Visual Data Analysis in Science and Engineering (15)
  • Computational Systems Biology (13)
  • Computational Molecular Design (8)
  • Computational Nano Optics (7)
  • Mathematics for Life and Materials Science (1)
+ more

341 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Effiziente Eigenmodenberechnung für den Entwurf integriert-optischer Chips (1996)
Deuflhard, Peter ; Friese, Tilmann ; Schmidt, Frank ; März, Reinhard ; Nolting, Hans-Peter
{\bf Efficient eigenmode computation for the design of integrated optical chips.}The paper deals with adaptive multigrid methods for 2D Helmholtz eigenvalue problems arising in the design of integrated optical chips. Typical features of the technological problem are its geometric complexity, its multiscale structure, the possible occurrence of eigenvalue clusters, and the necessity of quite stringent required relative error tolerances. For reasons of sheer computational complexity, multigrid methods must be used to solve the discretized eigenvalue problems and adaptive grids must be automatically constructed to avoid an undesirable blow-up of the required number of nodes for these accuracies. In view of the problem specifications, an adaptive multigrid method based on Rayleigh quotient minimization, simultaneous eigenspace iteration, and conjugate gradient method as smoother is carefully selected. Its performance in the numerical simulation of a component of a rather recent optical chip (heterodyne receiver of HHI) is documented.
The Berlin Extension of the Stanford Hyperthermia Treatment. (1994)
Seebass, Martin ; Sullivan, Dennis ; Wust, Peter ; Deuflhard, Peter ; Felix, Roland
In the field of deep regional hyperthermia, one of the most widely used devices is the BSD--2000 Hyperthermia System which employs the Sigma 60 applicator. The Sigma 60 consists of four independent sources, giving it the potential to control the energy pattern within the patient. The independent amplitudes and phases, as well as frequency selection and applicator position, present a large number of parameters for the operator to determine. Computer simulation has long been recognized as an attractive approach to optimizing these parameters. A treatment planning program was used in clinical practice at Stanford University Medical Center for two years. It demonstrated the feasibility of computer simulation for deep regional hyperthermia in a clinical situation. However, several parts of this system were written in a language specific to one workstation, which severely restricted the wider distribution of the program to other users of the Sigma 60. A new treatment planning system for the BSD 2000 has been developed and put into clinical practice at the Rudolf Virchow Clinic of the Free University of Berlin. The new method, which we will refer to as the Berlin system, has a simpler model construction program and a considerably better graphics capability. However, the most important feature is that all programs are written in FORTRAN, C, or the X Window graphics system. Therefore, the entire treatment planning system is completely portable to other workstations.
Effiziente Eigenmodenberechnung für den Entwurf integriert-optischer Chips (1996)
Deuflhard, Peter ; Friese, T. ; Schmidt, Frank ; März, Reinhard ; Nolting, Hans-Peter
Clinical evaluation and verification of the hyperthermia treatment planning system HyperPlan (2000)
Gellermann, Johanna ; Wust, Peter ; Stalling, Detlev ; Seebaß, Martin ; Nadobny, Jacek ; Hege, Hans-Christian ; Deuflhard, Peter ; Felix, Roland
Adaptive Finite Element Codes for Numerical Calculations in Hyperthermia Treatment Planning (1996)
Beck, Rudolf ; Hege, Hans-Christian ; Seebaß, Martin ; Wust, Peter ; Deuflhard, Peter ; Felix, Roland
A Volume Surface Integral Equation Method for Solving Maxwell’s Equations in Electrically Inhomogeneous Media Using Tetrahedral Grids (1996)
Nadobny, Jacek ; Wust, Peter ; Seebaß, Martin ; Deuflhard, Peter ; Felix, Roland
3D Phased Array Applicator for Hyperthermia Treatment in Pelvis (1999)
Nadobny, Jacek ; Wlodarczyk, Waldemar ; Wust, Peter ; Mönich, Gerhard ; Deuflhard, Peter ; Felix, Roland
Systematic Design of Antennas for a Cylindrical 3D Phased Array Hyperthermia Applicator (1999)
Wlodarczyk, Waldemar ; Nadobny, Jacek ; Wust, Peter ; Mönich, Gerhard ; Deuflhard, Peter ; Felix, Roland
Influence of Patient Models and Numerical Methods on Predicted Power Deposition Patterns (1999)
Wust, Peter ; Nadobny, Jacek ; Seebaß, Martin ; Stalling, Detlev ; Gellermann, Johanna ; Hege, Hans-Christian ; Deuflhard, Peter
Surface Mesh Generation for Numerical Simulations of Hyperthermia Treatments (1997)
Seebaß, Martin ; Stalling, Detlev ; Zöckler, Malte ; Hege, Hans-Christian ; Wust, Peter ; Felix, Roland ; Deuflhard, Peter
  • 1 to 10

OPUS4 Logo

  • Contact
  • Impressum und Datenschutz
  • Sitelinks