### Refine

#### Year of publication

#### Document Type

- ZIB-Report (28)
- Article (16)
- In Collection (3)
- In Proceedings (1)
- Doctoral Thesis (1)

#### Language

- English (49)

#### Is part of the Bibliography

- no (49)

#### Keywords

- optimal control (14)
- state constraints (9)
- interior point methods in function space (6)
- finite elements (3)
- Dynamical contact problems (2)
- Newmark method (2)
- Signorini condition (2)
- adaptivity (2)
- generic programming (2)
- interior point method (2)

#### Institute

A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.

A primal-dual interior point method for optimal control problems with PDE constraints is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed. Numerical results from an inexact continuation method applied to a model problem are shown.

A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples.

The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.

The paper considers the time integration of frictionless dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Among the numerical integrators, interest focuses on the contact-stabilized Newmark method recently suggested by Deuflhard et al., which is compared to the classical Newmark method and an improved energy dissipative version due to Kane et al. In the absence of contact, any such variant is equivalent to the Störmer-Verlet scheme, which is well-known to have consistency order 2. In the presence of contact, however, the classical approach to discretization errors would not show consistency at all because of the discontinuity at the contact. Surprisingly, the question of consistency in the constrained situation has not been solved yet. The present paper fills this gap by means of a novel proof technique using specific norms based on earlier perturbation results due to the authors. The corresponding estimation of the local discretization error requires the bounded total variation of the solution. The results have consequences for the construction of an adaptive timestep control, which will be worked out subsequently in a forthcoming paper.

An extended mathematical framework for barrier methods for state constrained optimal control compared to [Schiela, ZIB-Report 07-07] is considered. This allows to apply the results derived there to more general classes of optimal control problems, in particular to boundary control and finite dimensional control.

Interior Point Methods in Function Space for State Constraints - Inexact Newton and Adaptivity
(2008)

We consider an interior point method in function space for PDE constrained optimal control problems with state constraints. Our emphasis is on the construction and analysis of an algorithm that integrates a Newton path-following method with adaptive grid refinement. This is done in the framework of inexact Newton methods in function space, where the discretization error of each Newton step is controlled by adaptive grid refinement in the innermost loop. This allows to perform most of the required Newton steps on coarse grids, such that the overall computational time is dominated by the last few steps. For this purpose we propose an a-posteriori error estimator for a problem suited norm.

The minimization of an L^{\infty}-functional subject to an elliptic PDE and state constraints
(2008)

We study the optimal control of a maximum-norm objective functional subject to an elliptic-type PDE and pointwise state constraints. The problem is transformed into a problem where the non-differentiable L^{\infty}-norm in the functional will be replaced by a scalar variable and additional state constraints. This problem is solved by barrier methods. We will show the existence and convergence of the central path for a class of barrier functions. Numerical experiments complete the presentation.

This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition.

In this paper we are concerned with the application of interior point methods in function space to gradient constrained optimal control problems, governed by partial differential equations. We will derive existence of solutions together with first order optimality conditions. Afterwards we show continuity of the central path, together with convergence rates depending on the interior point parameter.