Refine
Year of publication
Document Type
- Article (67)
- ZIB-Report (52)
- In Proceedings (22)
- In Collection (9)
- Book (4)
- Book chapter (3)
- Software (2)
- Report (1)
Is part of the Bibliography
- no (160)
Keywords
- optimal control (18)
- interior point methods in function space (5)
- interior point methods (4)
- trajectory storage (4)
- discretization error (3)
- finite elements (3)
- flight planning (3)
- free flight (3)
- lossy compression (3)
- shortest path (3)
Institute
- Numerical Mathematics (134)
- Computational Medicine (103)
- Modeling and Simulation of Complex Processes (40)
- Visual and Data-centric Computing (13)
- Visual Data Analysis (12)
- Mathematics for Life and Materials Science (8)
- Network Optimization (8)
- Therapy Planning (8)
- ZIB Allgemein (7)
- Distributed Algorithms and Supercomputing (3)
In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.
We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply the method to parameter reconstruction in optical scatterometry, where we take into account a priori information and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical accuracy on the reconstruction result.
The paper provides a detailed analysis of a short step interior point algorithm applied to linear control constrained optimal control problems. Using an affine invariant local norm and an inexact Newton corrector, the well-known convergence results from finite dimensional linear programming can be extended to the infinite dimensional setting of optimal control. The present work complements a recent paper of Weiser and Deuflhard, where convergence rates have not been derived. The choice of free parameters, i.e. the corrector accuracy and the number of corrector steps, is discussed.
The paper presents a particle method framework for resolving molecular dynamics. Error estimators for both the temporal and spatial discretization are advocated and facilitate a fully adaptive propagation. For time integration, the implicit trapezoidal rule is employed, where an explicit predictor enables large time steps. The framework is developed and exemplified in the context of the classical Liouville equation, where Gaussian phase-space packets are used as particles. Simplified variants are discussed shortly, which should prove to be easily implementable in common molecular dynamics codes. A concept is illustrated by numerical examples for one-dimensional dynamics in double well potential.
The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.
A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.