### Refine

#### Year of publication

#### Document Type

- Article (55)
- ZIB-Report (50)
- In Proceedings (9)
- In Collection (9)
- Book (4)
- Book chapter (3)
- Report (1)

#### Is part of the Bibliography

- no (131)

#### Keywords

- optimal control (17)
- interior point methods in function space (5)
- interior point methods (4)
- trajectory storage (4)
- discretization error (3)
- finite elements (3)
- lossy compression (3)
- Newton-CG (2)
- complementarity functions (2)
- compression (2)

#### Institute

- Numerical Mathematics (119)
- Computational Medicine (98)
- Visual Data Analysis (12)
- Modeling and Simulation of Complex Processes (11)
- Mathematics for Life and Materials Science (8)
- Therapy Planning (8)
- ZIB Allgemein (7)
- Computational Nano Optics (2)
- Computational Systems Biology (2)
- Distributed Algorithms and Supercomputing (2)

In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.

We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply the method to parameter reconstruction in optical scatterometry, where we take into account a priori information and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical accuracy on the reconstruction result.

The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton--Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton--PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton--Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a {\sf NEWTON--KASKADE} algorithm.

The paper deals with the multilevel solution of {\em elliptic} partial differential equations (PDEs) in a {\em finite element} setting: {\em uniform ellipticity} of the PDE then goes with {\em strict monotonicity} of the derivative of a nonlinear convex functional. A {\em Newton multigrid method} is advocated, wherein {\em linear residuals} are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some {\em damping} of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An {\em affine conjugate} global convergence theory is given, which covers both the {\em exact} Newton method (neglecting the occurrence of approximation errors) and {\em inexact} Newton--Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a~{\sf NEWTON--KASKADE} code are documented.

The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.