### Refine

#### Year of publication

#### Document Type

- ZIB-Report (49)
- Article (36)
- In Collection (8)
- In Proceedings (6)
- Book (3)
- Book chapter (2)
- Report (1)

#### Keywords

- optimal control (15)
- interior point methods in function space (5)
- interior point methods (4)
- trajectory storage (4)
- discretization error (3)
- finite elements (3)
- lossy compression (3)
- Newton-CG (2)
- complementarity functions (2)
- compression (2)

#### Institute

- Numerical Mathematics (94)
- Computational Medicine (87)
- Visual Data Analysis (12)
- Therapy Planning (8)
- ZIB Allgemein (7)
- Computational Nano Optics (2)
- Computational Systems biology (2)
- Visual Data Analysis in Science and Engineering (2)
- Distributed Algorithms and Supercomputing (1)
- Mathematical Optimization (1)

We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes.

This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator.

Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.

We consider a shape implant design problem that arises in the context of facial surgery.
We introduce a reformulation as an optimal control problem, where the control acts
as a boundary force. The state is modelled as a minimizer of a polyconvex
hyperelastic energy functional. We show existence of optimal solutions and
derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results
are presented.

The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples.

In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.

Regional hyperthermia is a cancer therapy aiming at heating tumors using phased array applicators. This article provides an overview over current mathematical challenges of delivering individually optimal treatments. The focus is on therapy planning and identification of technical as well as physiological quantities from MR thermometry measurements.

Reasons for the failure of adaptive methods to deliver improved efficiency when integrating monodomain models for myocardiac excitation are discussed. Two closely related techniques for reducing the computational complexity of linearly implicit integrators, deliberate sparsing and splitting, are investigated with respect to their impact on computing time and accuracy.

Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens.

This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.