Analysis and Transformation of Configurable Systems
- Static analysis tools and transformation engines for source code belong to the standard equipment of a software developer. Their use simplifies a developer's everyday work of maintaining and evolving software systems significantly and, hence, accounts for much of a developer's programming efficiency and programming productivity. This is also beneficial from a financial point of view, as programming errors are early detected and avoided in the the development process, thus the use of static analysis tools reduces the overall software-development costs considerably. In practice, software systems are often developed as configurable systems to account for different requirements of application scenarios and use cases. To implement configurable systems, developers often use compile-time implementation techniques, such as preprocessors, by using #ifdef directives. Configuration options control the inclusion and exclusion of #ifdef-annotated source code and their selection/deselection serve as an input for generating tailor-made systemStatic analysis tools and transformation engines for source code belong to the standard equipment of a software developer. Their use simplifies a developer's everyday work of maintaining and evolving software systems significantly and, hence, accounts for much of a developer's programming efficiency and programming productivity. This is also beneficial from a financial point of view, as programming errors are early detected and avoided in the the development process, thus the use of static analysis tools reduces the overall software-development costs considerably. In practice, software systems are often developed as configurable systems to account for different requirements of application scenarios and use cases. To implement configurable systems, developers often use compile-time implementation techniques, such as preprocessors, by using #ifdef directives. Configuration options control the inclusion and exclusion of #ifdef-annotated source code and their selection/deselection serve as an input for generating tailor-made system variants on demand. Existing configurable systems, such as the linux kernel, often provide thousands of configuration options, forming a huge configuration space with billions of system variants. Unfortunately, existing tool support cannot handle the myriads of system variants that can typically be derived from a configurable system. Analysis and transformation tools are not prepared for variability in source code, and, hence, they may process it incorrectly with the result of an incomplete and often broken tool support. We challenge the way configurable systems are analyzed and transformed by introducing variability-aware static analysis tools and a variability-aware transformation engine for configurable systems' development. The main idea of such tool support is to exploit commonalities between system variants, reducing the effort of analyzing and transforming a configurable system. In particular, we develop novel analysis approaches for analyzing the myriads of system variants and compare them to state-of-the-art analysis approaches (namely sampling). The comparison shows that variability-aware analysis is complete (with respect to covering the whole configuration space), efficient (it outperforms some of the sampling heuristics), and scales even to large software systems. We demonstrate that variability-aware analysis is even practical when using it with non-trivial case studies, such as the linux kernel. On top of variability-aware analysis, we develop a transformation engine for C, which respects variability induced by the preprocessor. The engine provides three common refactorings (rename identifier, extract function, and inline function) and overcomes shortcomings (completeness, use of heuristics, and scalability issues) of existing engines, while still being semantics-preserving with respect to all variants and being fast, providing an instantaneous user experience. To validate semantics preservation, we extend a standard testing approach for refactoring engines with variability and show in real-world case studies the effectiveness and scalability of our engine. In the end, our analysis and transformation techniques show that configurable systems can efficiently be analyzed and transformed (even for large-scale systems), providing the same guarantees for configurable systems as for standard systems in terms of detecting and avoiding programming errors.…
Author: | Jörg Liebig |
---|---|
URN: | urn:nbn:de:bvb:739-opus4-2996 |
Advisor: | Sven Apel, Paul Grünbacher |
Document Type: | Doctoral Thesis |
Language: | English |
Year of Completion: | 2015 |
Date of Publication (online): | 2015/06/15 |
Publishing Institution: | Universität Passau |
Granting Institution: | Universität Passau, Fakultät für Informatik und Mathematik |
Date of final exam: | 2015/04/30 |
Release Date: | 2015/06/15 |
Tag: | Configurable Systems; Software Product Lines; Variability-aware Analysis; Variability-aware Refactoring |
GND Keyword: | Refactoring; Statische Analyse; Präprozessor; Softwarewartung; C <Programmiersprache> |
Page Number: | 160 |
Institutes: | Fakultät für Informatik und Mathematik |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
open_access (DINI-Set): | open_access |
Licence (German): | CC by: Creative Commons - Namensnennung |